H. R. 2912

To expand the capacity and capability of the ballistic missile defense system of the United States, and for other purposes.

IN THE HOUSE OF REPRESENTATIVES

JUNE 15, 2017

Mr. Young of Alaska (for himself, Mr. Lamborn, Ms. Hanabusa, Mr. Aguilar, Mr. Franks of Arizona, Mr. Bridenstine, Ms. Gabbard, Mr. Fleischmann, Mr. Bishop of Utah, Mr. Shuster, Mr. Gallagher, Mr. Ruppersberger, and Mr. Mast) introduced the following bill; which was referred to the Committee on Armed Services

A BILL

To expand the capacity and capability of the ballistic missile defense system of the United States, and for other purposes.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,

SECTION 1. SHORT TITLE.

This Act may be cited as the “Advancing America’s Missile Defense Act of 2017”.
SECT. 2. SENSE OF CONGRESS ON CURRENT STATE OF
UNITED STATES MISSILE DEFENSE, FUTURE INVESTMENT, AND ACCELERATING CAPABILITIES TO OUTPACE CURRENT THREATS.

(a) FINDINGS.—Congress makes the following findings:

(1) According to the Commander of United States Northern Command, General Lori Robinson, the ground-based midcourse defense (GMD) element of the ballistic missile defense system “defend[s] the homeland against a limited long-range ballistic missile attack” and “is designed to intercept incoming threats in the midcourse phase of flight.”

(2) Spanning 15 time zones, the ground-based midcourse defense element of the ballistic missile defense system and its associated elements represents the only system currently capable of defeating an adversary’s intercontinental ballistic missile (ICBM) in the midcourse segment of flight.

(3) Terminal High Altitude Area Defense (THAAD) is a United States Army weapon system that is transportable, globally deployable, and capable of defeating ballistic missiles inside or outside the atmosphere during a missile’s terminal phase of flight.
(4) In response to the aggressive behavior of North Korea, the United States initially deployed a Terminal High Altitude Area Defense battery to the United States territory of Guam in April of 2013, made that deployment permanent in July of 2015, and began to deploy a Terminal High Altitude Area Defense battery to South Korea in March of 2017.

(5) Aegis Ballistic Missile Defense is the naval component of the ballistic missile defense system capable of defeating short- to intermediate-range, mid-course-phase, ballistic missile threats and short-range ballistic missiles in the terminal phase.

(6) The Navy currently has 33 Aegis Ballistic Missile Defense combatants, 5 cruisers (CGs) and 28 destroyers (DDGs), and will add an additional ballistic missile defense-capable destroyer by the end of fiscal year 2017.

(7) Aegis Ashore is the land-based component of the Aegis Ballistic Missile Defense system and is currently capable of defeating short- to intermediate-range ballistic missile threats.

(8) In 2015, the United States deployed the first Aegis Ashore unit to Romania, and in 2018, the United States plans to deploy an Aegis Ashore unit to Poland.
The current leader of North Korea, Kim Jong-un, has threatened a “preemptive nuclear strike” against the United States and has publicly stated that North Korea “can tip new-type intercontinental ballistic rockets with more powerful nuclear warheads” capable of ranging the United States mainland.

Kim Jong-un has rapidly increased the cadence of nuclear and ballistic missile testing.

North Korea’s testing is steadily progressing toward their stated goal and has achieved some notable successes, including its first submarine-launched ballistic missile in 2016 and its first solid-fueled, medium-range ballistic missile in early 2017.

According to General John E. Hyten, Commander of United States Strategic Command, during a hearing of the Committee on Armed Services of the Senate on February 11, 2017, “the North Koreans launched a new solid, medium-range ballistic missile . . . A solid rocket [that] can be rolled out and launched at a moment’s notice.”

General Hyten further testified that the February 11th test also “showed a new technology [and] a new North Korean capability . . . [The
North Koreans] moved what was demonstrated at sea onto land, onto a new launcher, and did it in a very quick way.”

(14) On May 14, 2017, North Korea launched a new missile, reported as a Hwasong-12, that reportedly flew a highly lofted trajectory reaching an altitude of over 2,000 kilometers and traveling more than 700 kilometers in distance before falling into the East Sea.

(15) Several senior officials at the Department of Defense have publicly stated their belief that, due to the new pace of North Korean missile testing, it is no longer a matter of if North Korea gets the capability to threaten the contiguous United States with a nuclear intercontinental ballistic missile, but when North Korea will achieve that capability.

(16) During the past six years, under the regime of Kim Jong-un, North Korea has conducted approximately 80 ballistic missile and three nuclear tests.

(17) During the same span of six years, the Missile Defense Agency, due to funding reductions, budget uncertainty, and a risk-averse testing culture, has only conducted four flight tests of the
ground-based midcourse defense element of the ballistic missile defense system.

(18) Since 2006 and adjusted for inflation, funding for the Missile Defense Agency’s budget has decreased 23.4 percent, from $11,000,000,000 to $8,400,000,000.

(19) Meanwhile, Iran continues to develop ballistic missiles in violation of United Nations Security Council Resolution 2231 (2015), has developed medium-range ballistic missiles to target Israel and other allies of the United States, and is working towards an intercontinental ballistic missile capability.

(20) In March 2013, in response to a nuclear detonation by North Korea, Secretary of Defense Chuck Hagel, citing “irresponsible and reckless provocations”, announced plans to restore the number of deployed ground-based interceptors from 30 to 44 by the end of 2017.

(21) The Missile Defense Agency will soon finish the expansion to 44 ground-based interceptors and begin the construction of a new S-band radar, the Long Range Discrimination Radar (LRDR), at Clear Air Force Station, Alaska, starting in 2018.

(22) The Missile Defense Agency is currently researching, testing, and developing the Configura-
tion-3 (C3) booster, a selectable two- or three-stage booster, and has plans to field this capability by September 30, 2023.

(23) Section 1682 of the National Defense Authorization Act for Fiscal Year 2016 (Public Law 114–92; 10 U.S.C. 2431 note) directs the Director of the Missile Defense Agency to modernize and improve the reliability of the ground-based interceptor fleet by speeding the development of the redesigned kill vehicle (RKV) to replace all capability-enhancement I exoatmospheric kill vehicles by September 30, 2022.

(24) Section 1681 of the National Defense Authorization Act for Fiscal Year 2016 (Public Law 114–92; 10 U.S.C. 2431 note) makes the multi-object kill vehicle (MOKV), which is a new technology that would allow single interceptors to engage more than one target, a program of record and directs the Director of the Missile Defense Agency to begin rigorous flight testing of a multiple-object kill vehicle for the ground-based midcourse defense system by 2020.

(25) Section 1680 of the National Defense Authorization Act for Fiscal Year 2016 (Public Law 114–92; 10 U.S.C. 2431 note) required the Sec-
retary of Defense to report on the efforts of the De-
dpartment of Defense to develop and deploy an air-
borne or other boost phase defense system for mis-
sile defense by fiscal year 2025.

(26) Section 1685 of the National Defense Au-
 thorization Act for Fiscal Year 2016 (Public Law
114–92) requires the Director to commence the con-
cept definition of a space-based ballistic missile
intercept layer to the ballistic missile defense system
and to draft operational concepts for how a space-
based ballistic missile intercept layer would function
in the context of a multi-layer missile defense archi-
tecture.

(27) Section 1683 of the National Defense Au-
thorization Act for Fiscal Year 2016 (Public Law
114–92) and section 238 of the National Defense
Authorization Act for Fiscal Year 2014 (Public Law
113–66) requires the Director to plan the future
construction of an additional missile defense site in
the United States, including the possibility of a site
on the East Coast of the United States that is capa-
ble of protecting the homeland.

(28) The Department of Defense and the Mis-
sile Defense Agency are continuing to deploy Aegis
Ballistic Missile Defense, Aegis Ashore, and Ter-
minal High Altitude Area Defense systems to more robustly defend members of the Armed Forces, allies and partners of the United States, cities and population centers in the United States, and critical infrastructure of the United States.

(29) The current United States missile defense architecture, including the ground-based midcourse defense and terminal segment defenses like the Terminal High Altitude Area Defense, Aegis Ballistic Missile Defense, Aegis Ashore, and Patriot Air and Missile Defense System, are presently capable of defending deployed Armed Forces of the United States, as well as allies and partners of the United States.

(30) General Robinson, in testimony before the Committee on Armed Services of the Senate on April 6, 2017, stated “As adversaries continue to pursue credible and advanced capabilities, we too must evolve our missile defense capabilities to outpace increasingly complex threats.”

(b) SENSE OF CONGRESS.—It is the sense of Congress that the Secretary of Defense should use the upcoming Ballistic Missile Defense Review (BMDR) and the Missile Defeat Review (MDR) to accelerate the development of new and existing means to increase the capacity,
capability, and reliability of the ground-based midcourse
defense element of the ballistic missile defense system and
other missile defense programs.

(c) ACCELERATION OF DEVELOPMENT OF CERTAIN
ADVANCED MISSILE DEFENSE TECHNOLOGIES TOWARD
FIELDING.—

(1) IN GENERAL.—To the degree practicable,
the Director of the Missile Defense Agency shall use
the policies of the Department of Defense to accel-
erate the development, testing, and fielding of the
redesigned kill vehicle, the multi-object kill vehicle,
the C3 booster, a space-based sensor layer, an air-
borne laser on unmanned aerial vehicles, and an ad-
ditional missile defense site, including the completion
of any outstanding environmental impact statements
(EISs) for an additional missile defense site on the
East Coast or in the Midwest regions of the United
States.

(2) PRIORITY.—The Director shall prioritize
the development of capabilities listed in paragraph
(1) subject to annual authorization and appropria-
tion of funding.

(3) DEVELOPMENT.—The Director shall use
sound acquisition processes and program manage-
ment to develop the capabilities set forth in para-
graph (1).

SEC. 3. AUTHORIZATION TO INCREASE CURRENT GROUND-
BASED MIDCOURSE DEFENSE CAPACITY BY
28 GROUND-BASED INTERCEPTORS.

(a) FINDINGS.—Congress makes the following find-
ings:

(1) A report from Johns Hopkins University,
published in 2015, and entitled “North Korea’s Nu-
clear Futures: Technology and Strategy”, concluded
that, by 2020, North Korea could have as many as
100 nuclear weapons.

(2) By December 31, 2017, the United States
will have 44 operational ground-based interceptors
distributed between Fort Greely, Alaska, and Van-
denberg Air Force Base, California.

(3) Missile Field 1 and Missile Field 2 at Fort
Greely have the capacity to house an additional 14
and 6 ground-based interceptors, respectively, with-
out the added infrastructure costs of some common
ground systems.

(4) A report by the Department of Defense,
submitted to Congress in 2013, and entitled “Home-
land Defense Hedging Policy and Strategy”, rec-
ommended acquiring 14 operational and testing
spares for increased testing requirements and to support increased capacity as a hedge against emerging threats.

(b) **INCREASE IN CAPACITY.**—The Secretary of Defense shall, subject to the annual authorization of appropriations and the annual appropriation of funds for National Missile Defense, increase the number of United States ground-based interceptors by 28.

(c) **REPORT TO CONGRESS.**—

(1) **IN GENERAL.**—Not later than 90 days after the date of the enactment of this Act, the Director of the Missile Defense Agency shall submit to the congressional defense committees (as defined in section 101(a) of title 10, United States Code) a report on infrastructure requirements to increase the number of ground-based interceptors at Missile Field 1 and Missile Field 2 at Fort Greely to 20 ground-based interceptors each.

(2) **CONTENTS.**—The report required by paragraph (1) shall include the following:

(A) An analysis of the strategic, operational, and tactical benefits of adding additional ground-based interceptors at each missile field.
(B) A detailed description of the infrastructure needed and costs associated with expanding each missile field.

(C) An identification of any environmental, technical, or logistical barriers to expanding each missile field.

(D) Any analysis of alternatively using Missile Field 4 and Missile Field 5 to increase the number of ground-based interceptors.

(3) FORM.—The report submitted under paragraph (1) shall be submitted in unclassified form, but may include a classified annex.

(d) DEPLOYMENT.—Not later than December 31, 2021, the Secretary of Defense shall—

(1) execute any requisite construction to ensure that Missile Field 1 or Missile Field 2 at Fort Greely or alternative missile fields at Fort Greely which may be identified pursuant to subsection (c), are capable of supporting and sustaining additional ground-based interceptors;

(2) deploy 14 additional ground-based interceptors to Missile Field 1 or an alternative missile field at Fort Greely as soon as technically feasible; and
(3) identify a ground-based interceptor stockpile storage site for a minimum of 14 ground-based interceptors.

SEC. 4. MISSILE DEFENSE AGENCY REPORT ON INCREASING NUMBER OF GROUND-BASED INTERCEPTORS UP TO 100.

(a) FINDINGS.—Congress makes the following findings:

(1) In six years of being in power, Kim Jong-un has conducted more missile tests, and more than twice as many nuclear tests, as both his father and grandfather conducted in their 60 total years of being in power.

(2) According to senior Department of Defense officials, Iran, which has the most active and diverse ballistic missile development program in the Middle East, may be able to deploy an operational intercontinental ballistic missile by 2020.

(3) A 2013 Department of Defense report to Congress, entitled “Homeland Defense Hedging Policy and Strategy”, stated that the most cost-effective and near-term option for increasing homeland interceptor capacity is at existing missile fields.
(4) Phase 3 of former President Clinton’s “3+3” strategy for national missile defense outlined as many as 250 interceptors.

(5) The 2000 Final Environmental Impact Statement for Fort Greely included the authorization for up to 100 ground-based interceptors to ensure that growth would not incur any unexpected environmental delays.

(b) Sense of Congress.—It is the sense of Congress that it is the policy of the United States to maintain and improve, with the allies of the United States, an effective, robust layered missile defense system capable of defending the citizens of the United States residing in territories and States of the United States, allies of the United States, and deployed Armed Forces of the United States.

(c) Report to Congress.—

(1) In General.—Not later than 90 days after the date of the enactment of this Act, the Director of the Missile Defense Agency shall submit to the congressional defense committees a report on increasing the capacity of the ground-based midcourse defense element of the ballistic missile defense system.

(2) Contents.—The report required by paragraph (1) shall include the following:
(A) An identification of potential sites—new or existing—to allow for the increase of up to 100 ground-based interceptors.

(B) An analysis of the strategic, operational, tactical, and cost benefits of each site.

(C) A description of any environmental, legal, or tactical challenges associated with each site.

(D) A detailed description of the infrastructure needed and costs associated with each site.

(E) A summary of any completed or outstanding environmental impact statements (EIS) on each site.

(F) An operational evaluation and cost analysis of the deployment of transportable ground-based interceptors, including an identification of potential sites, including in the eastern United States and at Vandenberg Air Force Base, and an examination of any environmental, legal, or tactical challenges associated with such deployments, including to any sites identified in subparagraph (A).

(G) A determination of the appropriate fleet mix of ground-based interceptor kill vehi-
cles and boosters to maximize overall system effectiveness and increase its capacity and capability, including the costs and benefits of continued inclusion of capability enhancement II (CE–II) Block 1 interceptors after the fielding of the redesigned kill vehicle.

(H) A description of the planned improvements to homeland ballistic missile defense sensor and discrimination capabilities and an assessment of the expected operational benefits of such improvements to homeland ballistic missile defense.

(I) The benefit of supplementing ground-based midcourse defense elements with other, more distributed, elements, including both Aegis ships and Aegis Ashore installations with Standard Missile-3 Block IIA and other interceptors in Hawaii and at other locations for homeland missile defense.

(3) FORM.—The report required by paragraph (1) shall be submitted in unclassified form, but may include a classified annex.
SEC. 5. EVALUATION AND EVOLUTION OF TERRESTRIAL GROUND-BASED MIDCOURSE DEFENSE SENSORS.

(a) FINDINGS.—Congress makes the following findings:

(1) United States missile defense sensors are the unheralded backbone of the missile defense architecture of the United States, positioned to provide the Armed Forces with critical data needed to successfully intercept threats from rogue nations like Iran and North Korea.

(2) The United States uses a wide variety of UHF, L-, S-, and X-band ground-based sensors and only a few infrared space-based sensors for early warning, tracking, and discrimination of ballistic missiles.

(3) The United States currently has operational upgraded early warning radars (UEWRs) for homeland missile defense at Beale Air Force Base, California, Fylingdales, United Kingdom, and Thule Air Force Base, Greenland, and will soon add upgrade early warning radars at Cape Cod, Massachusetts, and Clear Air Force Station, Alaska.

(4) Originally constructed in the 1970s, the COBRA DANE radar at Eareckson Air Station on
Shemya, Alaska, provides critical information on missile defense threats to the Armed Forces.

(b) REPORT TO CONGRESS.—

(1) IN GENERAL.—Not later than 90 days after the date of the enactment of this Act, the Director of the Missile Defense Agency, in coordination with the Secretary of the Air Force, shall submit to the congressional defense committees (as defined in section 101(a) of title 10, United States Code) a report on the status of the integrated layers of missile defense radars.

(2) CONTENTS.—The report required by paragraph (1) shall include the following:

(A) A detailed analysis of the expected improvements resulting from the integration of the Long Range Discrimination Radar into the missile defense system architecture of the United States, including—
(i) any adjustments to homeland missile defense tactics, techniques, and procedures;

(ii) possible adjustments to ground-based midcourse defense shot-doctrine and required interceptor capacity;

(iii) possibilities for direct integration with Fort Greely’s Command and Control node; and

(iv) impacts on regional missile defense systems including Aegis Ballistic Missile Defense, Aegis Ashore, and Terminal High Altitude Area Defense.

(B) A detailed comparison of the capabilities of Long Range Discrimination Radar and the COBRA DANE radar, including—

(i) the unique capabilities of each radar;

(ii) the overlapping capabilities of each radar; and

(iii) the advantages and disadvantages of each radar’s location.

(C) A modernization plan for the long-term continued operations and maintenance of the COBRA DANE radar or a plan to replace its
capability if COBRA DANE cannot remain operational, and the costs associated with each plan.

(e) Assessment by Comptroller General of the United States.—Not later than 90 days after the date on which the Director submits the report under subsection (b)(1), the Comptroller General of the United States shall—

(1) complete a review of the plan required by subsection (b)(2)(C); and

(2) submit to the congressional defense committees (as defined in section 101(a) of title 10, United States Code) a report on such review that includes the findings and recommendations of the Comptroller General.

(d) Form.—The reports submitted subsections (b) and (c) shall be submitted in unclassified form, but may include a classified annex.

SEC. 6. DEVELOPMENT AND DEPLOYMENT OF A SPACE-BASED MISSILE DEFENSE SENSOR ARCHITECTURE.

(a) Findings.—Congress makes the following findings:

(1) The Missile Defense Agency currently operates the Space Tracking and Surveillance System-
Demonstration (STSS–D), a two satellite constellation for testing purposes, which uses sensors capable of detecting visible and infrared light and serves as an experimental space tracker for the ballistic missile defense system.

(2) Conceptually developed in 2009, the Precision Tracking Space (PTSS) would have provided the persistent space-based tracking of ballistic missiles, including object characterization and discrimination, and would have also supported homeland, regional, and theater missile defense.

(3) Projected to enter orbit in 2018, the Missile Defense Agency and the Applied Physics Laboratory of Johns Hopkins University is currently conducting a Space-based Kill Assessment (SKA) experiment, a network of small sensors hosted on commercial satellites, used to collect the energy signature of the impact between a ballistic missile threat and an interceptor from the ballistic missile defense system.

(4) Section 236 of the National Defense Authorization Act for Fiscal Year 2014 (Public Law 113–66) required the Secretary of Defense to conduct an evaluation of options and alternatives for future sensor architectures for ballistic missile defense.
in order to enhance the ballistic missile defense ca-
pabilities of the United States.

(5) General John Hyten, Commander of the
United States Strategic Command, has argued for
the “deployment of a global space-based sensor sys-
tem with discrimination capability” as a “critical
component to improving the effectiveness of our de-
ployed interceptors” and to provide “multiple re-
response especially as potential adversaries embark on
improving countermeasures against our [missile de-
fense] systems.”.

(6) Admiral James Syring, the Director of the
Missile Defense Agency, has stated, “From a missile
defense perspective, we have to develop a future
operational space layer. Given where the threat is
going with hypersonics and more ICBMs and so
forth this persistent tracking and discrimination ca-
pability from space is a must.”.

(b) SENSE OF CONGRESS.—It is the sense of Con-
gress that the Department of Defense shall develop a resil-
ient space-based missile defense sensor layer to provide
persistent, launch-to-intercept tracking, discrimination,
and kill assessment of ballistic missile threats and provide
this capability to the Armed Forces as soon as technically
feasible.
(c) **Space-Based Missile Defense Sensor Architecture.**

(1) **Development.**—The Director of the Missile Defense Agency shall develop a highly reliable space-based missile defense sensor architecture for the ground-based midcourse defense system using sound acquisition practices.

(2) **Deployment.**—The Director shall—

(A) conduct rigorous testing of the space-based missile defense sensor architecture developed under paragraph (1) as soon as technically feasible; and

(B) produce and deploy a space-based missile defense sensor architecture as soon as technically feasible after the date on which the Director successfully carries out subparagraph (A).

(d) **Capabilities and Criteria.**—The Director shall ensure that the space-based missile defense sensor architecture developed under subsection (c)(1) provides the following functions and capabilities:

(1) **Sensor Functions.**—At a minimum, missile defense-related sensors shall include the following:

(A) Detection.
(B) Tracking.

(C) Characterization.

(D) Classification.

(E) Discrimination.

(F) Debris mitigation.

(G) Kill assessment.

(2) SENSOR ARCHITECTURE CAPABILITIES.—At a minimum, maximization or improvement of sensor-related capabilities shall include the following:

(A) Handling of increasing raid sizes.

(B) Precision tracking of threat missiles.

(C) Providing fire-control-quality tracks of evolving threat missiles.

(D) Enabling launch-on-remote and engage-on-remote capabilities.

(E) Discriminating lethal objects (warheads) from other objects.

(F) Effectively assessing the results of engagements.

(G) Enabling enhanced shot doctrine.

(H) Integrating with all elements of the current missile defense system, including the Terminal High Altitude Area Defense, Aegis Ballistic Missile Defense, Aegis Ashore, and Patriot Air and Missile Defense System.
(I) Such other capabilities as the Secretary of Defense determines appropriate.

(c) PROGRAM MANAGEMENT.—The management of the space-based missile defense sensor architecture developed under subsection (c) shall report directly to the Deputy Director of the Missile Defense Agency.

(f) REPORT ON FUNDING PROFILE.—The Director shall include with the budget justification materials submitted to Congress in support of the budget of the Department of Defense for fiscal year 2018 (as submitted with the budget of the President under section 1105(a) of title 31, United States Code) a report on the funding profile necessary to carry out subsection (c).

SEC. 7. AUTHORIZATION FOR MORE GROUND-BASED MID-COURSE DEFENSE TESTING.

(a) FINDINGS.—Congress makes the following findings:

(1) General John Hyten, Commander of the United States Strategic Command, stated that North Korea is quickly advancing their missile and nuclear technology because their rapid testing cadence allows them to quickly apply lessons learned in testing to advance new capabilities.

(2) General Hyten characterized the current irregular testing environment in the United States as
“the wrong kind of testing environment” due to risk-aversion and fear of failure.

(3) Regular missile defense testing, including ground testing and non-intercept tests, not only improves the missile defense system, but also gives the members of the Armed Forces experience with and confidence in their tactics, techniques, and procedures.

(4) Since 2006 and adjusted for inflation, funding for testing of the ground-based midcourse defense element has decreased 83.5 percent, from more than $400,000,000 to $65,800,000.

(5) Section 1689 of the National Defense Authorization Act for Fiscal Year 2017 (Public Law 114–328) requires the Director of the Missile Defense Agency to administer a flight test of the ground-based midcourse defense element of the ballistic missile defense system at least once each fiscal year.

(b) SENSE OF CONGRESS.—It is the sense of Congress that—

(1) at a minimum, the Missile Defense Agency should continue to flight test the ground-based midcourse defense element at least once each fiscal year;
(2) the Department of Defense should allocate increased funding to homeland missile defense testing to ensure that our defenses continue to evolve faster than the threats against which they are postured to defend;

(3) in order to rapidly innovate, develop, and field new technologies, the Director of the Missile Defense Agency should continue to focus testing campaigns on delivering increased capabilities to the Armed Forces as quickly as possible; and

(4) the Director of the Missile Defense Agency should seek to establish a more prudent balance between risk mitigation and the more rapid testing pace needed to quickly develop and deliver new capabilities to the Armed Forces.

(e) REPORT TO CONGRESS.—

(1) IN GENERAL.—Not later than 90 days after the date of the enactment of this Act, the Director of the Missile Defense Agency shall submit to the congressional defense committees (as defined in section 101(a) of title 10, United States Code) a revised missile defense testing campaign plan that accelerates the development and deployment of new missile defense technologies.
(2) CONTENTS.—The report required by paragraph (1) shall include the following:

(A) A detailed analysis of the acceleration of each of following programs:

(i) Redesigned kill vehicle.
(ii) Multi-object kill vehicle.
(iii) Configuration-3 booster.
(iv) Lasers mounted on small unmanned aerial vehicles.
(v) Space-based missile defense sensor architecture.

(vi) Such additional technologies as the Director considers appropriate.

(B) A new deployment timeline for each of the programs in listed in subparagraph (A) or a detailed description of why the current timeline for deployment technologies under those programs is most suitable.

(C) An identification of any funding or policy restrictions that would slow down the deployment of the technologies under the programs listed in subparagraph (A).

(D) A risk assessment of the potential cost-overruns and deployment delays that may
be encountered in the expedited development process of the capabilities under paragraph (1).

(d) **REPORT ON FUNDING PROFILE.**—The Director shall include with the budget justification materials submitted to Congress in support of the budget of the Department of Defense for fiscal year 2018 (as submitted with the budget of the President under section 1105(a) of title 31, United States Code) a report on the funding profile necessary for the new testing campaign plan required by subsection (c)(1).