To direct the Administrator of the Environmental Protection Agency to take certain actions related to pesticides that may affect pollinators, and for other purposes.

IN THE HOUSE OF REPRESENTATIVES

JUNE 23, 2017

Mr. CONYERS (for himself, Mr. BLUMENAUER, Mr. CONNOLLY, Mr. MEEKS, Ms. DeLAURO, Ms. CLARK of Massachusetts, Mr. LARSEN of Washington, Mr. NADLER, Mr. LEWIS of Georgia, Ms. LEE, Mr. CARTWRIGHT, Ms. McCOLLUM, Ms. TSONGAS, Ms. ROYBAL-ALLARD, Mr. PASCRELL, Ms. NORTON, Ms. SPEIER, Mr. HUFFMAN, Mr. HIMES, Mr. ELLISON, Ms. JUDY CHU of California, Mr. MCGOVERN, Mrs. WATSON COLEMAN, Mr. COHEN, Mr. RUSH, and Ms. LOFGREN) introduced the following bill; which was referred to the Committee on Agriculture

A BILL

To direct the Administrator of the Environmental Protection Agency to take certain actions related to pesticides that may affect pollinators, and for other purposes.

1 Be it enacted by the Senate and House of Representa-
2 tives of the United States of America in Congress assembled,
3
4 This Act may be cited as the “Saving America’s Polli-
5 nators Act of 2017”.

VerDate Sep 11 2014 22:36 Jun 30, 2017 Jkt 069200 PO 00000 Frm 00001 Fmt 6652 Sfmt 6201 E:\BILLS\H3040.IH H3040sradovich on DSK3GMQ082PROD with BILLS
SEC. 2. FINDINGS.

Congress finds the following:

(1) Pollination services are a vital part of agricultural production, valued at over $125,000,000,000 globally. According to a 2014 Presidential memorandum, pollinators provide for an annual amount of $24,000,000,000 to the economy of the United States and honeybees account for $15,000,000,000 of such amount. Similarly, pollination services of native pollinators, such as bumblebees, squash bees, and mason bees, contribute over $3,000,000,000 to the United States agricultural economy and are estimated to contribute between $937,000,000 and $2,400,000,000 to the economy of California alone.

(2) One-third of food produced in North America—including nearly 100 varieties of fruits and vegetables such as almonds, avocados, cranberries, and apples—depends on pollination by bees.

(3) Over the past several years, documented incidents of colony collapse disorder and other forms of excess bee mortality have been at a record high, with some beekeepers repeatedly losing 100 percent of their operations. The national honey crop reported in 2013 was the lowest in many decades.
(4) A recent national survey sponsored by the Federal Government indicates that United States beekeepers experienced a 45.2 percent annual mortality rate with their hives during the period beginning in April 2012 and ending in March 2013. During the winter of 2013–2014, two-thirds of beekeepers experienced loss rates greater than the established acceptable winter mortality rate.

(5) According to scientists at the Department of Agriculture, current losses of honeybee colonies are too high to confidently ensure the United States will be able to meet the pollination demands for agricultural crops.

(6) Native pollinators, such as bumblebees, have also suffered alarming population declines. There are currently more than 40 pollinator species federally listed as threatened or endangered, and most recently, the iconic monarch butterfly has declined by 90 percent.

(7) Scientists have linked the use of a certain class of systemic insecticides, known as neonicotinoids, to the rapid decline of pollinators and to the deterioration of pollinator health.

(8) Neonicotinoids cause sublethal effects, including impaired foraging and feeding behavior, dis-
orientation, weakened immunity, delayed larval development, and increased susceptibility to viruses, diseases, and parasites. Numerous reports also document acute, lethal effects from the application of neonicotinoids.

(9) Conclusions from a recent global review of the impacts of systemic pesticides, primarily neonicotinoids, warn that they are causing significant damage to a wide range of beneficial invertebrate species, are a key factor in the decline of bees, and pose a global threat to biodiversity and ecosystem services. Another recent global review documented high levels of freshwater contamination.

(10) Science has demonstrated that a single corn kernel coated with a neonicotinoid is toxic enough to kill a songbird. Peer-reviewed research from the Netherlands has shown that the most severe bird population declines occurred in those areas where neonicotinoid pollution was highest. Starlings, tree sparrows, and swallows were among the most affected.

(11) In January 2013, the European Food Safety Authority determined that the most widely used neonicotinoids pose unacceptable hazards to
bees, prompting the European Union to suspend their use on agricultural crops.

(12) In June 2013, over 50,000 bumblebees were killed as a direct result of exposure to a neonicotinoid applied to linden trees for cosmetic purposes.

(13) In February 2014, Eugene, Oregon, voted to ban the use of neonicotinoid pesticides on city property. Similar bans and restrictions have been enacted in Thurston County, Spokane, and Seattle, Washington, and Skagway, Alaska.

(14) In June 2014, a Presidential memorandum established a Pollinator Health Task Force after identifying pollinator decline as a threat to the sustainability of food production systems, the agricultural economy, and the health of the environment in the United States.

(15) In July 2014, the United States Fish and Wildlife Service announced plans to phase out neonicotinoid pesticides in all national wildlife refuges across the United States by January 2016. The United States Fish and Wildlife Service recognized that the prophylactic use of neonicotinoids for agricultural purposes harms a wide range of nontarget species and is therefore inconsistent with the man-
agement policy of the United States Fish and Wild-
life Service.

(16) In October 2014, an assessment by the
Environmental Protection Agency found that
neonicotinoid seed coatings provide little benefit to
overall soybean crop yield. Additional studies deter-
mined that in approximately 80 to 90 percent of row
crop uses, neonicotinoid coatings are unnecessary.
The prophylactic overuse of neonicotinoids violates
the fundamental principles of integrated pest man-
agement.

(17) In November 2014, the Province of On-
tario, Canada, announced the province will move to
restrict the use of neonicotinoid-coated corn and soy-
bean seeds because of the broad harms from their
overuse, with a goal of 80 percent reduction by
2017.

(18) In September 2015, the Circuit Court of
the United States for the Ninth Circuit ruled to re-
voke the Environmental Protection Agency’s ap-
proval for sulfoxaflor—a neonicotinoid pesticide.

(19) In November 2016, Health Canada, the
Department of the Government of Canada with re-
sponsibility for national public health, proposed a
ban on almost all uses of the neonicotinoid
imidacloprid, saying it is seeping into Canadian wa-
terways at levels that can harm insects and the eco-
system.

(20) The President’s budget for fiscal year 2018 cuts funding for pesticide review programs of the Environmental Protection Agency by 20 percent delaying reviews of new, potentially safer pesticides as well as reviews of older, more dangerous pes-
ticides such as neonicotinoids.

SEC. 3. URGENT REGULATORY RESPONSE FOR HONEYBEE AND POLLINATOR PROTECTION.

(a) In General.—Not later than 180 days after the date of the enactment of this Act, the Administrator of the Environmental Protection Agency shall suspend the registration of imidacloprid, clothianidin, thiamethoxam, dinotafuran, and any other members of the nitro group of neonicotinoid insecticides to the extent such insecticide is registered, conditionally or otherwise, under the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 136 et seq.) for use in seed treatment, soil application, or foliar treatment on bee-attractive plants, trees, and cereals until the Administrator has made a determination that such in-
secticide will not cause unreasonable adverse effects on pollinators based on—
(1) an evaluation of the published and peer-reviewed scientific evidence on whether the use or uses of such neonicotinoids cause unreasonable adverse effects on pollinators, including native bees, honeybees, birds, bats, and other species of beneficial insects; and

(2) a completed field study that meets the criteria required by the Administrator and evaluates residues, including residue buildup after repeated annual application, chronic low-dose exposure, cumulative effects of multiple chemical exposures, and any other protocol determined to be necessary by the Administrator to protect managed and native pollinators.

(b) CONDITIONS ON CERTAIN PESTICIDES REGISTRATIONS.—Notwithstanding section 3 of the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 136a), for purposes of the protection of honeybees, other pollinators, and beneficial insects, the Administrator of the Environmental Protection Agency shall not issue any new registrations, conditional or otherwise, for any seed treatment, soil application, and foliar treatment on bee-attractive plants, trees, and cereals under such Act until the Administrator has made the determination described in subsection (a), based on an evaluation described in sub-
section (a)(1) and a completed field study described in subsection (a)(2), with respect to such insecticide.

(c) Monitoring of Native Bees.—The Secretary of the Interior, in coordination with the Administrator of the Environmental Protection Agency, shall, for purposes of protecting and ensuring the long-term viability of native bees and other pollinators of agricultural crops, horticultural plants, wild plants, and other plants—

(1) regularly monitor the health and population status of native bees, including the status of native bees in agricultural and nonagricultural habitats and areas of ornamental plants, residential areas, and landscaped areas;

(2) identify the scope and likely causes of unusual native bee mortality; and

(3) beginning not later than 180 days after the date of the enactment of this Act and each year thereafter, submit to Congress, and make available to the public, a report on such health and population status.