systems, businesses, informal science organizations, and other research organizations throughout the U.S.

Pursuant to the National Science Foundation for the Future Act, NSF will contract with the National Academies of Science, Engineering, and Medicine to assess the status and opportunities for Pre-K through 12 science, technology, engineering, and mathematics, including computer science, (STEM) education research.

The NSF contributions have specifically benefited Texas institutions by previously investing $46,828,000 to STEM education and $356,731,000 in fundamental research.

The National Science Foundation for the Future Act will continue to impact Texas STEM education.

For example, money distributed through the National Science Foundation go to University of Houston STEM student researching at The University of Houston Division of Research Department.

In the past, the NSF funding helped researchers at Rice University develop a nano-technology-based "trap-and-zap" approach to absorbing and deactivating antibiotic-resistant genes.

More importantly the money from the NSF is contributed to the Science and Technology Enhancement Program (STEP) at Texas Southern University to help increase the number of African-American and female graduates in all STEM fields.

H.R. 2225 carries out a national initiative to facilitate the development of networks and partnerships to broaden participation in STEM studies and careers of historically underrepresented groups like students at Historically Black Colleges and Universities (HBCUs).

The NSF contributions like Texas Southern University contribute to President Biden’s plan to help build up and financially support Historically Black Colleges and Universities (HBCUs).

Research has found that HBCUs are vital to helping underrepresented students move to the top of the income ladder.

HBCUs are only three percent of four-year universities, and their graduates make up approximately 80 percent of Black judges, half of Black lawyers and doctors, and 25 percent of Black engineers struggling STEM degrees.

President Biden wants us to invest in HBCU’s by creating or expanding educational programs in high-demand fields (e.g., STEM, computer sciences, nursing, and allied health), with an additional $2 billion directed towards building a pipeline of skilled health care workers with graduate degrees.

Through the American Jobs Plan, President Biden wants to eliminate racial and gender inequities in research and development and science, technology, engineering, and math.

President Biden wants to invest $40 billion in upgrading research infrastructure in laboratories across the country, including brick-and-mortar facilities and computing capabilities and networks. These funds would be allocated across all federal R&D agencies, including at the Department of Energy.

Half of those funds will be reserved for Historically Black Colleges and Universities (HBCUs) and other Minority Serving Institutions, including the creation of a new national lab focused on climate that will be affiliated with an HBCU.

H.R. 2225 awards the NSF billions of dollars in the next five years to address significant societal challenges and sustain United States leadership in innovation by increasing investments in research, specifically for underrepresented populations, like HBCU students, in STEM.

I urge all Members to join me in voting for H.R. 2225, the "National Science foundation for the Future Act," to ensure that we fund our STEM programs to prepare us for the future better.

The SPEAKER pro tempore. The question was taken.

Ms. JOHNSON of Texas. Mr. Speaker, I move to suspend the rules and pass the bill (H.R. 3593) to provide guidance for and investment in the research and development activities of the Department of Energy Office of Science, and for other purposes, as amended.

The Clerk read the title of the bill. The text of the bill is as follows:

H.R. 3593

DEPARTMENT OF ENERGY SCIENCE FOR THE FUTURE ACT

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,

SECTION 1. SHORT TITLE.

This Act may be cited as the “Department of Energy Science for the Future Act”.

SEC. 2. MISSION OF SCIENCE.

Section 209 of the Department of Energy Organization Act (42 U.S.C. 18641) is amended—

(1) by redesignating subsections (a) through (e) as subsections (c) through (g), respectively; and

(2) by inserting after subsection (c), as so redesignated, the following:

“(a) IN GENERAL.—The Secretary shall carry out the construction, operation, and maintenance of user facilities to support the mission described in subsection (c). As practicable, these facilities shall serve the needs of the Department, industry, the academic community, and other relevant entities for the purposes of advancing the missions of the Department, improving the competitiveness of the United States, protecting public health and safety, and addressing other national priorities during emergencies.

“(e) COORDINATION.—

“(1) IN GENERAL.—The Secretary shall:

“(A) ensure the coordination of the Office of science with the other activities of the Department;

“(B) support joint activities among the programs of the Department;

“(C) shall coordinate with other relevant Federal agencies in supporting advancements in related research areas as appropriate;

“(D) shall coordinate and carry out chemistry-related research and development in all STEM fields.

“(2) OFFICE OF SCIENCE.—The Director—

“(A) shall ensure the coordination of programs and activities carried out by the Office of Science; and

“(B) shall direct all programs which have not recently completed a future planning roadmap consistent with the funding of such programs authorized under the Department of Energy Science for the Future Act to complete such a roadmap.”.

SEC. 3. BASIC ENERGY SCIENCES PROGRAM.

(a) DEPARTMENT OF ENERGY RESEARCH AND INNOVATION ACT.—Section 303 of the Department of Energy Research and Innovation Act (42 U.S.C. 18641) is amended—

(1) by redesignating subsections (a) through (e) as subsections (c) through (g), respectively; and

(2) by inserting after subsection (c), as so redesignated, the following:

“(a) PROGRAM.—As part of the activities authorized under section 209 of the Department of Energy Organization Act (42 U.S.C. 18641), the Director shall carry out a research and development program in basic energy sciences, including materials sciences and engineering, chemical sciences, physical biosciences, geosciences, and other disciplines, to understand, model, and control matter and energy at the electronic, atomic, and molecular levels in order to provide the foundations for new energy technologies, address scientific grand challenges, and support the energy, environment, and national security missions of the Department.

“(b) SUSTAINABLE CHEMISTRY.—In carrying out the chemistry-related research and development activities under this section, the Director shall prioritize research and development of sustainable chemistry to support clean, safe, and economic alternatives and methodologies to traditional chemical products and processes.”;

(3) in subsection (d), as so redesignated—

(A) in paragraph (3)—

(i) by striking “and” and inserting “and” after “the” before “end”;

(ii) by redesignating subparagraph (D) as subparagraph (E); and

(iii) by inserting after subparagraph (C) the following:

“(D) AUTONOMOUS CHEMISTRY.—In this paragraph:

“(1) FLUX.—The term ‘flux’ means the rate of flow of photons.

“(2) HARD X-RAY.—The term ‘hard x-ray’ means a photon with energy greater than 20 kiloelectronvolts.

“(B) IN GENERAL.—The Secretary shall provide for the upgrade to the Advanced Photon Source described in the publication approved by the Basic Energy Sciences Advisory Committee on June 9, 2016, titled ‘Report on Facility Upgrades’, including the implementation of a multi-bend achromat lattice to produce a high flux of coherent x-rays within the hard x-ray energy region and a suite of beamlines optimized for this source.

“(C) START OF OPERATIONS.—The Secretary shall, subject to the availability of appropriations, ensure that the start of full operations of the upgrade under this paragraph occurs before March 31, 2026.

“(D) FUNDING.—Out of funds authorized to be appropriated under subsection (j), there shall be made available to the Secretary to carry out the upgrade under this paragraph $101,000,000 for fiscal year 2022 and $56,000,000 for fiscal year 2023.

“(E) ABOLITION NEUTRON SOURCE POWER UPGRADE.—

“(1) IN GENERAL.—The Secretary shall provide for the proton power upgrade to the Spallation Neutron Source.

“(2) PROTON POWER UPGRADE DEFINED.—For the purposes of this paragraph, the term

1730

H3206

CONGRESSIONAL RECORD — HOUSE

June 28, 2021
‘proton power upgrade’ means the Spallation Neutron Source power upgrade described in—

(i) the publication titled ‘Facilities for the Future of Science: A Twenty-Year Out-look’, published by the Office of Science of the Department of Energy in December, 2003;

(ii) the publication titled ‘Four Years Later: An Interim Report on Facilities for the Future of Science: A Twenty-Year Outlook’, published by the Office of Science of the Department of Energy in August, 2007; and

(iii) the publication approved by the Basic Energy Sciences Advisory Committee on June 9, 2016, titled ‘Report on Facility Upgrades’.

(C) START OF OPERATIONS.—The Secretary shall, subject to the availability of appro- priations, ensure that the start of full oper- ations of the upgrade under this paragraph occurs before July 30, 2029, with the option for early operation in 2025.

(D) FUNDING.—Out of funds authorized to be appropriated under subsection (j), there shall be made available to the Secretary to carry out the upgrade under this paragraph $49,800,000 for fiscal year 2022.

(E) Start of Operations.—(A) In General.—The Secretary shall provide for a second target station for the Spallation Neutron Source.

(B) Target Station Defined.—For the purposes of this paragraph, the term ‘second target station’ means the Spallation Neutron Source second target station described in—

(i) the publication titled, ‘Facilities for the Future of Science: A Twenty-Year Out-look’, published by the Office of Science of the Department of Energy in December, 2003;

(ii) the publication titled ‘Four Years Later: An Interim Report on Facilities for the Future of Science: A Twenty-Year Outlook’, published by the Office of Science of the Department of Energy in August, 2007; and

(iii) the publication approved by the Basic Energy Sciences Advisory Committee on June 9, 2016, titled ‘Report on Facility Upgrades’.

(C) Start of Operations.—The Secretary shall, subject to the availability of appro- priations, ensure that the start of full oper- ations of the second target station under this paragraph occurs before December 31, 2023, with the option for early operation in 2029.

(D) FUNDING.—Out of funds authorized to be appropriated under subsection (j), there shall be made available to the Secretary to carry out the activities under this paragraph, including construction—

(i) $70,000,000 for fiscal year 2022;

(ii) $204,000,000 for fiscal year 2023;

(iii) $204,000,000 for fiscal year 2024;

(iv) $279,000,000 for fiscal year 2025; and

(v) $300,000,000 for fiscal year 2026.

(E) Source Upgrade.—(A) Definitions.—In this paragraph—

(i) FLUX.—The term ‘flux’ means the rate of flow of photons.

(ii) SXR—The term ‘soft x-ray’ means a photon with energy in the range from 50 to 2,000 electron volts.

(B) In General.—The Secretary shall pro- vide for the upgrade of the Linac Coherent Light Source described in the publication approved by the Basic Energy Sciences Advisory Committee on June 9, 2016, titled ‘Report on Facility Upgrades’ by including the development of a multibend achromat lattice to produce a high flux of coherent x-rays within the soft x-ray energy region.

(C) Goals and Objectives.—The Secretary shall, subject to the availability of appro- priations, ensure that the start of full oper- ations of the upgrade under this paragraph occurs before September 30, 2029.

(D) FUNDING.—Out of funds authorized to be appropriated under subsection (j), there shall be made available to the Secretary to carry out the upgrade under this paragraph—

(i) $75,100,000 for fiscal year 2022;

(ii) $135,000,000 for fiscal year 2023;

(iii) $195,000,000 for fiscal year 2024;

(iv) $25,000,000 for fiscal year 2025; and

(v) $25,000,000 for fiscal year 2026.

(E) Linac Coherent Light Source II High Energy Upgrade.—(A) Definitions.—In this paragraph:

(i) HIGH ENERGY X-RAY.—The term ‘high energy x-ray’ means x-ray with an energy in the 5 to 13 kiloelectron volt range.

(ii) HI-REPTITION RATE.—The term ‘high repetition rate’ means the delivery of x-ray pulses up to 1 million pulses per sec- cond.

(iii) ULTRA-SHORT PULSE X-RAYS.—The term ‘ultra-short pulse x-rays’ means x-ray bursts capable of durations of less than 100 femtoseconds.

(B) IN GENERAL.—The Secretary shall—

(i) provide for the upgrade to the Linac Coherent Light Source described in the publication approved by the Basic Energy Sciences Advisory Committee on June 9, 2016, titled ‘Report on Facility Upgrades’, including the development of experimental capabilities for high energy x-rays to reveal fundamental scientific discoveries; and

(ii) ensure such upgrade enables the produc- tion and use of x-rays with ultra-short pulse x-rays delivered at a high repetition rate.

(C) Start of Operations.—The Secretary shall, subject to the availability of appro- priations, ensure that the start of full oper- ations of the upgrade under this paragraph occurs before 2029.

(D) FUNDING.—Out of funds authorized to be appropriated under subsection (j), there shall be made available to the Secretary to carry out the upgrade under this paragraph—

(i) $106,925,000 for fiscal year 2022;

(ii) $125,925,000 for fiscal year 2023;

(iii) $155,000,000 for fiscal year 2024;

(iv) $89,000,000 for fiscal year 2025; and

(v) $99,344,000 for fiscal year 2026.

(F) Cryomodule Repair and Maintenance Facility.—(A) In General.—The Secretary shall pro- vide for the construction of a cryomodule re- pair and maintenance facility to service the Linac Coherent Light Source and upgrades to the facility. The Secretary shall consult with the private sector, universities, Na- tional Laboratories, and relevant Federal agencies to ensure that this facility has the capability to maintain, repair, and test superconducting radiofrequency accelerator components.

(B) FUNDING.—Out of funds authorized to be appropriated under subsection (j), there shall be made available to the Secretary to carry out the activities under this para- graph—

(i) $19,000,000 for fiscal year 2022;

(ii) $25,000,000 for fiscal year 2023;

(iii) $25,000,000 for fiscal year 2024; and

(iv) $17,000,000 for fiscal year 2025.

(G) Nanoscale Science Research Center Recapitalization Project.—(A) In General.—The Secretary shall pro- vide for the recapitalization of the Nanoscale Science Research Centers, to include the up- grade of equipment at each Center supported by the Office of Science on the date of enact- ment of Energy Science and late Department of Energy Science for the Future Act, to accelerate advances in the various fields of science including nano- science, materials, chemistry, biology, and quantum information science.

(B) FUNDING.—Out of funds authorized to be appropriated under subsection (j), there shall be made available to the Secretary to carry out the recapitalization under this paragraph—

(i) $20,000,000 for fiscal year 2022;

(ii) $20,000,000 for fiscal year 2023;

(iii) $20,000,000 for fiscal year 2024; and

(iv) $20,000,000 for fiscal year 2025.

(H) Forward-looking Research Centers.—(I) In General.—The Director shall sup- port a program of research and development for the application of advanced computing practices to foundational and emerging re- search problems in chemistry and materials science. Research activities shall include—

(i) chemical catalysis research and develop- ment;

(ii) the use of large data sets to model materials phenomena, including through advanced characterization of materials, mate- rials synthesis, processing, and innovative use of experimental and theoretical data;

(iii) co-design of chemical system and chemistry modeling software with advanced computing systems and hardware technolo- gies; and

(iv) modeling of chemical processes, as- sessment of outcomes and research processes for the application of quantum dynamics and quantum chemistry, including through novel computing methods.

(II) Computational Materials and Chemical Sciences Centers.—(A) In General.—In carrying out the ac- tivities authorized under paragraph (I), the Director shall select and establish up to six computational materials and chemical sciences centers to—

(i) develop open-source, robust, and vali- dated computational codes and user-friendly software that can be coupled with large sets of experimental and theoretical data, to enable the design, discovery, and development of new materials and chemical systems; and

(ii) solve compelling challenges and maximize the benefits of exascale and other high performance computing under- pinned by accelerated node technologies.

(B) Selection.—The Director shall select centers under subparagraph (A) on a com- petitive, merit-reviewed basis. The Director shall consider applications from the Na- tional Laboratories, institutes of higher edu- cation, multi-institutional collaborations, and other appropriate entities.

(C) Duration.—(I) Any center selected under subparagraph (A) shall receive support for a period of not more than 5 years beginning on the date of establishment of that center, subject to the availability of appropriations, in order to support the development of a web-based plat- form and other high-performance computing tools to accelerate breakthroughs in materials science to—

(ii) the development of a high-performance computing system that supports research in materials science, including interdisciplinary tools to enable the discovery of new materials to be made available to stakeholders.

(D) Renewal.—Upon the expiration of support of a center under this subsection, the Director may renew support for the center, on a merit-reviewed basis, for a period of not more than 5 years.

(E) Termination.—Consistent with the existing authorities of the Department, the Director may terminate an underperforming center for cause during the performance pe- riod.

(F) Renewal.—Upon the expiration of support of a center under this subsection, the Director may renew support for the center, on a merit-reviewed basis, for a period of not more than 5 years.

(G) Termination.—Consistent with the existing authorities of the Department, the Director may terminate an underperforming center for cause during the performance pe- riod.

(H) Materials Research Database.—(I) In General.—The Director shall sup- port the development of a web-based plat- form that is accessible to a data- base of computed information on known and predicted materials properties and computa- tional tools to accelerate breakthroughs in materials discovery and materials sustainabil-
“(A) conduct cooperative research with industry, academia, and other research institutions to advance understanding, prediction, and manipulation of materials and facilitate the discovery of novel materials; and

“(B) develop and maintain data infrastructure at user facilities that generate data to collect, analyze, label, and otherwise prepare the data for the database.

“(C) leverage existing high performance computing systems to conduct high throughput calculations, and develop computational and data algorithms for the prediction of material properties;

“(D) strengthen the foundation for new technologies and advanced manufacturing; and

“(E) drive the development of advanced materials for applications that span the Department’s missions in energy, environment, and national security.

“(3) COORDINATION.—In carrying out this subsection, the Director shall leverage programs and activities across the Department, including computational materials and chemical sciences centers established under subsection (b).

“(4) FUNDING.—Out of funds authorized to be appropriated under subsection (j), there shall be made available to the Secretary to carry out activities under this subsection $10,000,000 for each of the fiscal years 2022 through 2026.

“(j) AUTHORIZATION OF APPROPRIATIONS.—There is hereby authorized to be appropriated to the Secretary to carry out the activities described in this section—

“(1) $2,727,705,000 for fiscal year 2022;

“(2) $2,897,066,600 for fiscal year 2023;

“(3) $3,019,489,612 for fiscal year 2024;

“(4) $3,161,698,855 for fiscal year 2025; and

“(5) $3,291,651,600 for fiscal year 2026.

“SCIENCE.—Section 306 of the Department of Energy Research and Innovation Act (42 U.S.C. 18644(a)), the Director shall support up to six bioenergy research centers to conduct fundamental research in plant and microbial systems, biology, bioinformatics, imaging and analysis, and genomics, and to accelerate advanced research and development of biomass-based liquid transportation fuels, bioenergy or bio-based materials, chemicals, and products that are produced from a variety of regionally diverse feedstocks, and to facilitate the translation of research results to industry. The activities of the centers authorized under this subsection may include—

“(A) accelerating the domestication of bioenergy-relevant plants, microbes, and associated microbial communities to enable high-impact, value-added coproduct development at multiple points in the bioenergy supply chain;

“(B) developing the science and technological advances to ensure process sustainability is considered in the creation of biofuels and bioproducts from lignocellulosic; and

“(C) using the latest tools in genomics, molecular biology, catalysis science, chemical engineering, computational and robotics technologies to sustainably produce and transform biomass into biofuels and bioproducts.

“(2) SELECTION AND DURATION.—

“(A) IN GENERAL.—A center established under paragraph (1) shall be selected on a competitive, merit-reviewed basis for a period of not more than 5 years, subject to the availability of appropriations, beginning on the date of establishment of that center.

“(B) APPLICATIONS.—The Director shall consider applications from National Laboratories, multi-institutional collaborations, and other appropriate entities.

“(C) EXISTING CENTERS.—A center already in existence on the date of enactment of the Department of Energy of the Future Act may continue to receive support for a period of not more than 5 years and may subsequently provide an additional renewal on a merit-reviewed basis for a period of not more than 5 years.

“(D) TERMINATION.—Consistent with the existing authorities of the Director, the Director may terminate an Underperforming center for cause during the performance period.

“(E) ACTIVITIES.—Centers shall undertake research activities to accelerate the production of biofuels and bioproducts from advanced biomass resources by identifying the most sustainable species of plants for use as bioenergy crops; and improving methods of breeding, propagation, planting, producing, harvesting, storage and processing. Activities may include the following:

“(A) Research activities to increase sustainability, including—

“(i) advancing knowledge of how bioenergy crops interact with their environment; and adaptive, biotic and abiotic environmental factors influence crop growth, yield, and quality;
(ii) identifying the most impactful research areas that address the economics of biofuels and bioproducts production; and

(iii) utilizing multiscale modeling to advance predictive understanding of biofuel cropping ecosystems.

(B) Research activities to further feedstock development, including lignocellulosic, algal, and woody feedstocks, including carbon oxidides and methane, and direct air capture of single carbon gases via plants and microbes, including—

(i) developing genetic and genomic tools, high-throughput analytical tools, and biosystems design approaches to enhance bioenergy feedstocks and their associated microorganisms;

(ii) conducting field testing of new potential bioenergy feedstock crops under environmentally benign and geographically diverse conditions to assess viability and robustness; and

(iii) developing quantitative models informed by experimentation to predict how bioenergy feedstocks perform under diverse conditions.

(C) Research activities to improve lignocellulosic deconstruction and separation methods, including—

(i) developing feedstock-agnostic deconstruction processes capable of efficiently fractionating biomass into targeted outputs;

(ii) gaining a detailed understanding of plant cell wall biosynthesis, composition, structure, and properties during deconstruction; and

(iii) improving enzymes and approaches for biomass breakdown and cellulose, hemicellulose, and lignin processing.

(D) Research activities to improve the feedstock conversion process for advanced biofuels and bioproducts, including—

(i) developing high-throughput methods to screen or select high-performance microbial strains and communities to improve product formation rates, yields, and selectivity; and

(ii) establishing a broad set of platform microorganisms and microbial communities suitable for metabolic engineering to produce biofuels and bioproducts, as well as high-throughput methods for experimental validation of gene function;

(iii) developing techniques to enhance microbial robustness for tolerating toxins to improve bioproduct yields and to gain a better understanding of the cellular and molecular bases of tolerance for major chemical classes of inhibitors found in these processes; and

(iv) advancing technologies for the use of batch, continuous, as well as consolidated bioprocessing; and

(v) identifying, creating, and optimizing microbial and chemical pathways to produce promising, atom-economical intermediates and final bioproducts from biomass with considered, as well as provided to environmentally benign processes;

(vi) developing high-throughput, real-time, in situ analytical techniques to understand the behavior of pre- and post-bioproduct separation streams in detail;

(vii) creating methodologies for efficiently identifying viable target molecules, identifying high-value bioproducts in existing biomass streams, and utilizing current bioproduct streams;

(viii) identifying and improving plant feedstocks that enhance extractable levels of desired bioproducts or bioproduct precursors, including lignin streams; and

(ix) developing integrated biological and chemical approaches to produce a diverse portfolio of advanced fuels and bioproducts.

(6) INDUSTRY PARTNERSHIPS.—Centers shall establish industry partnerships to translate research results to commercial applications.

(7) COORDINATION.—In coordination with the Bioenergy Technologies Office of the Department, the Director shall support interdisciplinary research activities to improve the operation of energy and infrastructure security, reliability, and affordability, of the production and use of biofuels and bioproducts, as well as activities to enable positive impacts of biofuel and bioproduct production; that the production and use of biofuels and bioproducts may have on ecosystems, people, and historically marginalized communities.

(8) LOW-DOSE RADIATION RESEARCH PROGRAM.—Section 306(e)(8) of the Department of Energy Research and Innovation Act (42 U.S.C. 18646(e)(8), as redesignated under subsection (a), is amended—

(1) in subparagraph (C), by striking “and” and adding at the end the following:

‘‘(3) by adding at the end the following:

‘‘(E) inform potential natural mitigation and adaptation options for increased concentrations of greenhouse gases and any associated impacts in climate, as applicable, and in consultation with the National Oceanic and Atmospheric Administration and other relevant agencies, which may include activities to—’’;

(2) in subparagraph (D), by striking the period at the end and inserting a semicolon; and

(3) by adding at the end the following:

‘‘(E) inform potential natural mitigation and adaptation options for increased concentrations of greenhouse gases and any associated impacts in climate, as applicable, and in consultation with the National Oceanic and Atmospheric Administration and other relevant agencies, which may include activities to—’’;

(9) CLIMATE, ENVIRONMENTAL SCIENCE, AND OTHER ACTIVITIES.—Section 306(f)(1) of the Department of Energy Research and Innovation Act (42 U.S.C. 18646(d)), as redesignated under subsection (a), is amended to read as follows:

‘‘(1) IN GENERAL.—The Secretary of Energy, in consultation with the Administrator of the National Aeronautics and Space Administration, shall carry out a basic research program on the similarities and differences between the effects of exposure to low-dose radiation on Earth, in low Earth orbit, and in the space environment.

‘‘(2) PURPOSE.—The purpose of this program is to accelerate breakthroughs in low-dose and low dose-rate radiation research and development as described in subsection (e) and to inform the advancement of new tools, technologies, and advanced materials needed to facilitate long-duration space exploration.’’.

(10) EARTH AND ENVIRONMENTAL SYSTEMS SCIENCES ACTIVITIES.—

(A) IN GENERAL.—As part of the activities authorized under paragraph (a), and in coordination with activities carried out under subsection (b), the Director shall carry out earth and environmental systems science research to inform decision making and other relevant agencies, and shall carry out research to advance an integrated, coupled physical, chemical, and biological processes to transform, immobilize, remove, or move carbon, nitrogen, and other energy production-derived contaminants such as radionuclides and heavy metals, and understand the processes and mechanisms of affecting and using these, carbon dioxide, and other relevant molecules in subsurface environments;

(B) understand the coupled physical, chemical, and biological processes to transform, immobilize, remove, or move carbon, nitrogen, and other energy production-derived contaminants such as radionuclides and heavy metals, and understand the processes and mechanisms of affecting and using these, carbon dioxide, and other relevant molecules in subsurface environments;

(C) understand, observe, and model the cycling of nutrients and greenhouse gases in terrestrial and aquatic systems and at scales relevant to resources management; and

(D) understand the biological, biogeochemical, and physical processes across the multiple scales that control the flux of environmentally relevant compounds between the terrestrial surface and the atmosphere; and

(E) inform potential natural mitigation and adaptation options for increased concentrations of greenhouse gases and any associated impacts in climate.

(11) PRIORITIZATION.—In carrying out the program authorized under paragraph (1), the Director shall prioritize—

(A) the development of software and algorithms to enable the productive application of environmental systems and extreme weather in climate and Earth system prediction models in high-performance computing systems; and

(B) capabilities that support the Department’s mission needs for energy and infrastructure security, resilience, and reliability.

(12) ENVIRONMENTAL SYSTEMS SCIENCE RESEARCH.—As part of the activities described in paragraph (1), the Director shall—

(A) support interdisciplinary research to significantly advance our understanding of water availability, quality, and the impact of human activity and a changing climate on urban and rural water systems, including in freshwater environments;

(B) focus the strategic research described in paragraph (A); and

(C) engage with representatives of relevant academic, research, and nonprofit organizations, State, local, and tribal governments, and industry, who have expertise in technologies, technological innovations, and practices relating to the water-energy nexus, as applicable.

(II) COORDINATION.—

(A) DIRECTOR.—The Director shall carry out activities under this paragraph in accordance with priorities established by the Secretary to support and accelerate the decontamination of relevant facilities managed by the Department.

(B) SECRETARY.—The Secretary shall ensure the coordination of activities of the Department, including activities under this paragraph, to support and accelerate the decontamination of relevant facilities managed by the Department.

(III) CLIMATE AND EARTH MODELING.—As part of the activities described in paragraph (1), the Director, in collaboration with the Advanced Scientific Computing Research Program described in section 304 and other programs carried out by the Department, as applicable, and in consultation with the National Oceanic and Atmospheric Administration, and other relevant agencies, shall carry out research to develop and use high-resolution regional climate, global climate, Earth system, and other relevant models to inform decisions on reducing greenhouse gas emissions and impacts of a changing global climate. Such modeling shall include—
"(A) Integrated capabilities for modeling multisectoral interactions, including socioeconomic factors as appropriate, which may include the impacts of climate policies on social, economic, and well-being, and the interdependencies and risks at the energy-water-land nexus; "(B) greenhouse gas emissions, air quality, energy supply and demand, and other critical elements; and "(C) interaction among human and Earth systems informed by interdisciplinary research including the economic and social sciences.

"(5) MID-SCALE FUNDING MECHANISM.—"(A) IN GENERAL.—Any of the activities authorized in this subsection may be carried out by competitively selected mid-scale, multi-institutional research centers in lieu of individual research grants, or large-scale experiments or user facilities.

"(B) CONSIDERATION.—The Biological and Environmental Research Advisory Committee shall advise the Secretary on projects most suitable for the research centers described in paragraph (A).

"(6) FACTORY FUNDING.—"(A) IN GENERAL.—Any of the user facilities to be established and operated under this section shall be operated on a competitive, merit-reviewed basis. The Director shall select projects to meet the missions of the Department and to provide platform technologies for the broader scientific community. Facilities shall include but are not limited to—

"(1) next generation sensors including quantum sensors for biological integration and bioproduction; "(2) technologies to accelerate data analysis; and

"(3) plant and microbial phenotyping for gene discovery.

"(E) the Gulf coast.

"(6) USER FACILITIES.—"(A) IN GENERAL.—The Secretary shall establish and operate user facilities under paragraph (1) on a competitively selected, merit-reviewed basis. The Director shall ensure that the Office of Science and the National Oceanic and Atmospheric Administration operate user facilities for the purposes of carrying out the programs and establishing the field research sites under paragraph (1) and (2) and for carrying out the research and development infrastructure supported by the Department, including the Department’s existing marine and coastal research laboratories.

"(B) CONSIDERATION.—The Biological and Environmental Research Advisory Committee shall advise the Secretary on projects most suitable for the user facilities described in this subsection.

"(C) EXISTING FACILITIES.—To the maximum extent practicable, the user facilities developed, constructed, operated, or maintained under paragraph (1) shall include—

"(1) currently being undertaken by other agencies; "(2) state-of-the-art technology; and "(3) existing facilities.

"(D) CONSIDERATION.—The Secretary shall consult and coordinate with the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the Department of Energy, the Department of the Interior, and any other relevant Federal agency on the selection, validation, and analysis of observational data; and

"(E) the Secretary may enter into agreements with Federal Departments and agencies with complementary capabilities.

"(3) in subsection (c) (as redesignated under section 209(d) of the Department of Energy Organization Act (42 U.S.C. 7139)) to further research and advance emerging technologies.

"(5) ADVANCED SCIENTIFIC COMPUTING RESEARCH PROGRAM.—"(a) ADVANCED SCIENTIFIC COMPUTING RESEARCH.—Section 304 of the Department of Energy Organization Act (42 U.S.C. 18642) is amended—

"(1) by redesignating subsections (a) through (c) as subsections (b) through (d), respectively; and

"(2) by inserting before subsection (b), as so redesignated, the following:

"(a) IN GENERAL.—As part of the activities authorized under section 209 of the Department of Energy Organization Act (42 U.S.C. 7139), the Director shall carry out, in coordination with academia and relevant public and private sector entities, a research, development, and demonstration program to—

"(1) steward applied mathematics, computational science, and computer science research relevant to the missions of the Department and the competitiveness of the United States;

"(2) develop modeling, simulation, and other computational tools relevant to other scientific disciplines and to the development of new energy technologies and other technologies;

"(3) advance computing and networking capabilities for data-driven discovery; and

"(4) develop advanced scientific computing hardware and software tools for science and engineering.

"(2) INTERAGENCY COORDINATION.—The Secretary shall coordinate with the Director of the National Science Foundation, the Administrator of the National Aeronautics and Space Administration, the Director of the U.S. Geological Survey, and other relevant officials to ensure the development of high-quality observational activities and to ensure that activities carried out under this initiative are complimentary to those currently being undertaken by other agencies.

"(5) REPORT.—Not later than 180 days after the enactment of this Act, the Secretary shall provide a report to the Committee on Science, Space, and Technology and the Committee on Energy and Natural Resources of the Senate, on the activities mandated in subsection (k).

"(6) AUTHORIZATION OF APPROPRIATIONS.—There are authorized to be appropriated to the Secretary to carry out the activities described in this section—

"(1) $839,360,000 for fiscal year 2022; "(2) $886,385,200 for fiscal year 2023; "(3) $956,332,164 for fiscal year 2024; "(4) $1,020,475,415 for fiscal year 2025; and "(5) $1,095,168,085 for fiscal year 2026.

"(6) SEC. 5. ADVANCED SCIENTIFIC COMPUTING RESEARCH PROGRAM.—"(a) ADVANCED SCIENTIFIC COMPUTING RESEARCH.—Section 304 of the Department of Energy Organization Act (42 U.S.C. 18642) is amended—

"(1) by redesignating subsections (a) through (c) as subsections (b) through (d), respectively; and

"(2) by inserting before subsection (b), as so redesignated, the following:

"(a) IN GENERAL.—As part of the activities authorized under section 209 of the Depart-
(A) by striking “The Director” and inserting the following:

“(1) DIRECTOR.—The Director; and

(B) by adding at the end the following:

“(2) The Under Secretary for Science shall ensure the coordination of the activities of the Department, including activities under this section, to determine and prioritize and manage research and facility needs of the Office of Science and all other relevant energy technology and energy efficiency programs within the Department and with other Federal agencies as appropriate.”;

(4) by amending subsection (d), as so redesignated, to read as follows:

“(d) APPLIED MATHEMATICS AND SOFTWARE DEVELOPMENT FOR HIGH-END COMPUTING SYSTEMS AND COMPUTER SCIENCE RESEARCH.—

“(1) The Director shall carry out activities to develop, test, and support—

“(A) mathematics, statistics, and algorithms for modeling complex systems relevant to the missions of the Department, including on advanced computing architectures; and

“(B) tools, languages, programming environments, and operations for high-end computing systems (as defined in section 2 of the American Super Computing Leadership Act (15 U.S.C. 5441)).

“(2) PORTFOLIO BALANCE.—

“(A) IN GENERAL.—The Director shall maintain a balanced portfolio within the advanced computing research and development program established under section 976 of the Energy Policy Act of 2005 (42 U.S.C. 16316) that supports robust investment in—

“(i) applied mathematical, computational, and computer science research needs relevant to the mission of the Department, including foundational areas that are critical to the advancement of energy sciences and technologies and new and emerging computing technologies; and

“(ii) associated high-performance computing hardware and facilities.

“(B) EXASCALE ECOSYSTEM SUSTAINMENT.—

“(1) IN GENERAL.—It is the sense of Congress that the Exascale Computing Project has successfully created a broad ecosystem that provides shared software packages, novel evaluation systems, and applications to ensure high-performance computing requirements of the Department, and that such products must be maintained and improved in order that the full potential of the deployed systems can be continuously realized.

“(2) EXECUTION.—

“(A) PROGRAM.—In carrying out the program under paragraph (1), the Secretary shall—

“(i) establish a partnership for National Laboratories, universities, and institutions of higher education for codesign of energy efficient computing and data center technologies relevant to advanced computing applications, including high performance computing, artificial intelligence, and scientific machine learning.

“(ii) develop hardware and software technologies that meet the energy needs of advanced computing practices, including through data center co-design; and

“(iii) consider multiple heterogeneous computing architectures in collaboration with the program established under subsection (f) including neuromorphic computing, persistent computing, and ultrafast networking.

“(B) COORDINATION.—In carrying out this program, the Secretary shall ensure coordination between research activities undertaken by the Basic Energy Sciences program, the Advanced Scientific Computing Research program and materials research supported by the Basic Energy Sciences program within the Department of Energy Office of Science.

“(1) ARCHITECTURAL RESEARCH IN HETEROGENEOUS COMPUTING SYSTEMS.—

“(1) IN GENERAL.—The Secretary shall carry out a program of research and development in heterogeneous and reconfigurable computing systems to expand understanding of the potential for heterogeneous and reconfigurable computing systems to deliver high performance, high efficiency computing for Department of Energy mission challenges. Such research and development that explores the convergence of big data analytics, simulations, and artificial intelligence to drive the design of heterogeneous computing system architectures.

“(2) COORDINATION.—In carrying out this program, the Secretary shall ensure coordination between research activities undertaken by the Basic Energy Sciences program and materials research supported by the Basic Energy Sciences program within the Department of Energy Office of Science.

“(1) ENERGY EFFICIENT COMPUTING PROGRAM.—

“(1) IN GENERAL.—The Secretary shall support a program of fundamental research, development, and demonstration of energy efficient computing and data center technologies relevant to advanced computing applications, including high performance computing, artificial intelligence, and scientific machine learning.

“(2) EXECUTION.—

“(A) PROGRAM.—In carrying out the program under paragraph (1), the Secretary shall—

“(i) establish a partnership for National Laboratories, universities, and institutions of higher education for codesign of energy efficient hardware, technology, software, and applications across all applicable programs of the Department, and provide access to energy efficient computing resources to such partners;

“(ii) develop hardware and software technologies that meet the energy needs of advanced computing practices, including through data center co-design; and

“(iii) consider multiple heterogeneous computing architectures in collaboration with the program established under subsection (f) including neuromorphic computing, persistent computing, and ultrafast networking.

“(B) COORDINATION.—In carrying out this program, the Secretary shall ensure the coordination and management of the program under subparagraph (A) to ensure an integrated research program across the Department.

“(1) ENERGY SCIENCES NETWORK.—

“(1) IN GENERAL.—The Secretary shall provide for upgrades to the Energy Sciences Network user facility to meet the research needs of the Department for highly reliable data transport capabilities optimized for the requirements of large-scale science.

“(2) CAPABILITIES.—In carrying out paragraph (1), the Secretary shall ensure the following capabilities:

“(A) To provide high bandwidth scientific networking across the continental United States and the Atlantic Ocean.

“(B) To ensure network reliability.

“(C) To protect the network infrastructure from cyber-attacks.

“(D) To manage transport of exponentially increasing levels of data from the Department’s National Laboratories, user facilities, experiments, and sensors.

“(E) To contribute to the integration of heterogeneous computing frameworks and systems.

“(1) COMPUTATIONAL SCIENCE GRADUATE FELLOWSHIP.—

“(1) IN GENERAL.—The Secretary shall support the Computational Science Graduate Fellowship program in order to facilitate collaboration between graduate students and researchers at the National Laboratories, and contribute to the development of a diverse and inclusive computational workforce to help advance research in areas relevant to the mission of the Department.

“(2) FUNDING.—From within funds authorized to be appropriated for Advanced Scientific Computing Research Program, the Secretary shall carry out the activities described in this section—

“(A) $21,000,000 for fiscal year 2022;

“(B) $22,050,000 for fiscal year 2023;

“(C) $23,152,500 for fiscal year 2024;

“(D) $24,310,125 for fiscal year 2025; and

“(E) $25,525,631 for fiscal year 2026.

“(3) AUTHORIZATION OF APPROPRIATIONS.—There are authorized to be appropriated to the Secretary to carry out the activities described in this section—

“(A) $1,126,350,000 for fiscal year 2022;

“(B) $1,222,674,000 for fiscal year 2023;

“(C) $1,324,320,715 for fiscal year 2024;

“(D) $1,431,660,115 for fiscal year 2025; and

“(E) $1,535,090,122 for fiscal year 2026.

“(B) QUANTUM SCIENCE NETWORK.—

“(1) DEFINITIONS.—Section 2 of the National Quantum Initiative Act (15 U.S.C. 8601) is amended—

“(A) by redesigning paragraph (7) as paragraph (8); and

“(B) by inserting after paragraph (6) the following:

“(7) QUANTUM NETWORK INFRASTRUCTURE.—The term ‘quantum network infrastructure’ means any facility, expertise, or capability that is necessary to enable the development and deployment of scalable and diverse quantum network technologies.”.

“(2) DEPARTMENT OF ENERGY QUANTUM NETWORK INFRASTRUCTURE AND DEVELOPMENT PROGRAM.—(A) Title IV of the National Quantum Initiative Act (15 U.S.C. 8651
scientific computing, particle and nuclear physics, and material science to enhance the understanding, prediction, and manipulation of materials, processes, and physical phenomena relevant to quantum network infrastructure;

(5) develop experimental tools and testbeds in collaboration with the Department of Energy’s Energy Sciences Network User Facility to support cross-cutting fundamental research and development activities with diverse stakeholders from industry, National laboratories, and institutions of higher education;

(6) consider quantum network infrastructure applications that span the Department of Energy’s missions in energy, environment, and national security.

(c) LEVERAGING.—In carrying out this section, the Secretary shall leverage resources, infrastructure, and expertise across the Department of Energy and from—

(1) the National Institute of Standards and Technology;

(2) the National Science Foundation;

(3) the National Aeronautics and Space Administration;

(4) other relevant Federal agencies;

(5) industry stakeholders;

(6) institutions of higher education; and

(7) the National Quantum Information Science Research Centers.

(b) PROGRAM.—In carrying out this section, the Secretary shall—

(1) coordinate with—

(A) the Director of the National Science Foundation;

(B) the Director of the National Institute of Standards and Technology;

(C) the Chair of the Subcommittee on Quantum Information Science of the National Science and Technology Council established under section 1524(a); and

(D) the Chair of the Subcommittee on the Economic and Security Implications of Quantum Science;

(2) conduct cooperative research with industry, National Laboratories, institutions of higher education, and other research institutions to facilitate new quantum infrastructure methods and technologies, including—

(A) quantum-limited detectors, ultra-low loss optical channels, space-to-ground connections, and classical networking and cybersecurity protocols;

(B) entanglement and hyper-entangled state sources and transmission, control, and measurement of quantum states;

(C) quantum interconnects that allow short range local connections between quantum processors;

(D) coders for quantum sources and signals between optical and telecommunications regimes and quantum computer-relevant domains, including microwaves;

(E) development of quantum memory buffers and small-scale quantum computers that are compatible with photon-based quantum bits in the optical or telecommunications regime;

(F) long-range entanglement distribution at both the terrestrial and space-based level using quantum repeaters, allowing entanglement of protocols between small- and large-scale quantum processors;

(G) quantum routers, multiplexers, repeaters, and related technologies necessary to create secure long-distance quantum communication; and

(H) integration of systems across the quantum technology stack into traditional computing, including the development of remote controlled, high-performance, and reliable implementations of key quantum network components by leveraging the expertise, infrastructure and supplemental investments in the Energy Sciences Network User Facility;

(3) engage with the Quantum Economic Development (QED-C) to translation component technologies to help facilitate as appropriate the development of a quantum supply chain for quantum network technologies;

(4) advance basic research in advanced scientific computing, particle and nuclear physics, and material science through a competitive, merit-reviewed process;

(5) consider applications from the National Laboratories, multi-institutional collaborations, institutions of higher education, industry stakeholders, and any other entities that the Secretary determines are appropriate to provide national leadership on quantum computing related issues; and

(4) consult and coordinate with private sector stakeholders, the user community, and interagency partners on program development and best practices.

(d) RESEARCH PLAN.—Not later than 180 days after the date of enactment of this Act, the Secretary, the Chair of the Subcommittee on Science, Space, and Technology, shall—

(1) develop a research plan that identifies and prioritizes basic research needs relating to quantum network infrastructure;

(2) develop experimental tools and testbeds in collaboration with the Department of Energy’s Energy Sciences Network User Facility to support cross-cutting fundamental research and development activities with diverse stakeholders from industry, National laboratories, and institutions of higher education;

(3) consider applications from the National Aeronautics and Space Administration; and

(4) other relevant Federal agencies.

(e) STANDARD OF REVIEW.—The Secretary shall review activities carried out under this section to determine the achievement of technical milestones.

(f) FUNDING.—Out of funds authorized to be appropriated for the Department of Energy’s Office of Science, there shall be made available to the Secretary to carry out the activities under this section—

(1) $100,000,000 for fiscal year 2022;

(2) $100,000,000 for fiscal year 2023;

(3) $70,000,000 for fiscal year 2024;

(4) $90,000,000 for fiscal year 2025; and

(5) $90,000,000 for fiscal year 2026.

(g) EQUIPMENT, MATERIALS, AND BUSINESS-OPERATIONS USE OF HIGH-PERFORMANCE COMPUTING CAPABILITIES.—

(1) SENSE OF CONGRESS.—It is the sense of Congress that machine learning algorithms can exhibit biases that cause harm to historically marginalized communities.

(2) POLICY.—In leveraging high-performance computing systems for research purposes, including through the use of machine learning algorithms for data analysis, the Secretary shall ensure that such capabilities are employed in a manner that mitigates and, to the maximum extent practicable, avoids harmful algorithmic bias and equitably addresses challenges impacting different population subgroups that historically marginalized communities.

(B) The table of contents in section 1(b) of the National Quantum Initiative Act is amended by inserting after item 4 the following items:

Sec. 403. Department of energy quantum network infrastructure research and development program.

Sec. 404. Department of energy quantum user expansion for science and technology program.

SEC. 6. FUSION ENERGY RESEARCH.

(a) FUSION ENERGY RESEARCH.—Section 307 of the Department of Energy Research and Innovation Act (42 U.S.C. 18445) is amended—

(1) in subsection (b)—

(A) in the matter preceding paragraph (1), by striking ‘‘As part of’’ and inserting the following:

‘‘(1) In general.—As part of’’;

(B) by redesignating paragraphs (1) and (2) as paragraphs (A) and (B), respectively (adjusting the margins of such subparagraphs accordingly); and

(2) in subsection (c) (as added by section 6 of the Energy Independence and Security Act of 2007 (42 U.S.C. 15804)), by striking ‘‘as part of’’ and inserting the following:

‘‘(C) In general.—As part of’’;

(D) in the matter preceding paragraph (1), by striking ‘‘As part of’’ and inserting the following:

‘‘(1) In general.—As part of’’;

(E) in the matter preceding paragraph (2), by striking ‘‘As part of’’ and inserting the following:

‘‘(2) In general.—As part of’’;

(F) in the matter preceding paragraph (3), by striking ‘‘As part of’’ and inserting the following:

‘‘(3) In general.—As part of’’;
(1) In general.—The Secretary shall carry out a program to conduct and support collaborative research, development, and demonstration of fusion energy technologies, through high-performance computing and simulation techniques, in order to—

(A) support fundamental research in plasma and matter at very high temperatures and densities;

(B) inform the development of a broad range of fusion energy systems; and

(C) develop methods for achieving the performance goals for fusion energy relevant parameters.

(2) Authorization of appropriations.—Out of funds authorized to be appropriated under paragraph (1), there are authorized to be appropriated to the Secretary to carry out activities described in paragraph (1) $50,000,000 for each of fiscal years 2022 through 2026; and

(3) by striking “(o)” and inserting “(r)”; and

(4) by striking subsection (e)(4)—

(A) by striking the period at the end and inserting “and $40,000,000 for fiscal year 2026.”; and

(B) by striking “(o)” and inserting “(r)”; and

(5) in subsection (e)(10)—

(A) in the matter preceding subparagraph (A), by striking “(o)” and inserting “(r)”; (B) by striking “(o)” and inserting “(r)”; and

(C) in paragraph (e), by striking the period at the end and inserting “; and”;

(D) by adding at the end the following:

“(F) $45,000,000 for fiscal year 2026.”;

(6) in subsection (j)—

(A) by striking “The Director” and all that follows through the period and inserting the following:

“(1) In general.—The Secretary shall establish at least 2 national teams, in coordination with the Innovation Network for Fusion Energy, support fundamental research in plasma and matter at very high temperatures and densities; and

(B) in paragraph (1) (as so designated by paragraph (a)), there are authorized to be appropriated to the Secretary to carry out activities described in paragraph (1) $50,000,000 for each of fiscal years 2022 through 2026; and

(C) by striking paragraph (c), (d), (e), (f), (g), (h), (i), (j), (k), (l), (m), (n), (o), (p), (q), (r), (s), (t), (u), (v), (w), (x), (y), (z), and (aa) and inserting the following:

“(1) Establishment.—Within 180 days of enactment of the Energy Research and Development Act of 2021, the Secretary shall establish at least 2 national teams, in coordination with the Innovation Network for Fusion Energy, establish a high-performance computing and simulation network to support the research under paragraph (1), the Secretary shall coordinate with relevant Federal agencies to ensure that this facility is capable of meeting Federal research needs for steady state, high-heat-flux and plasma-material interaction testing of fusion materials over a range of fusion energy relevant parameters.

(2) Authorization of appropriations.—Out of funds authorized to be appropriated for Fusion Energy Sciences, there are authorized to be appropriated to the Secretary for the Office of Fusion Energy Sciences to carry out activities described in this section $1,149,042,284 for fiscal year 2025; and

(3) by adding at the end the following:

“(C) $12,600,000 for fiscal year 2024; and

(D) $800,000 for fiscal year 2025.

(7) in subsection (i)—

(A) by striking “The Director” and all that follows through the period and inserting “; and”;

(B) by striking “(o)” and inserting “(r)”; and

(C) by adding at the end the following:

“(C) The ability to expose previously irradiated plasma facing material samples to neutron or gamma irradiation under conditions approximating a reactor environment.

(3) Authorization of appropriations.—Out of funds authorized to be appropriated for Fusion Energy Sciences, there are authorized to be appropriated to the Secretary for the Office of Fusion Energy Sciences to carry out activities described in paragraphs (1) and (2) and this subsection $32,800,000 for fiscal year 2022; $33,400,000 for fiscal year 2023; and $34,000,000 for fiscal year 2024.

(4) Funding.—Out of funds authorized to be appropriated for Fusion Energy Sciences, there are funds authorized to be appropriated to the Secretary for the Office of Fusion Energy Sciences to carry out activities described in paragraph (1) and this subsection $50,000,000 for each of fiscal years 2022 through 2026.

(5) Start of operations.—The Secretary shall, subject to the availability of appropriations, ensure that the start of full operations of the facility under this section occurs before December 31, 2027.

(6) Duration.—The Secretary shall ensure that the Center is capable of meeting Federal research needs for understanding physical and chemical changes to plasmas at fundamental timescales, and explore new domains of science and technology, by 2032.

(7) for the implementation of the program described in section (a)(1)(C) $45,000,000 for each of fiscal years 2022 through 2026.
(1) in subparagraph (A), by striking “and” at the end; and
(2) by striking subparagraph (B) and inserting the following:
 "(B) $37,000,000 for fiscal year 2022;
 (C) $235,000,000 for fiscal year 2023;
 (D) $250,000,000 for fiscal year 2024;
 (E) $275,000,000 for fiscal year 2025; and
 (F) $250,000,000 for fiscal year 2026.

SEC. 7. HIGH ENERGY PHYSICS PROGRAM.
(a) Program.—Section 305 of the Department of Energy Research and Innovation Act (42 U.S.C. 18645) is amended—
 (1) by redesignating subsections (b) through (d) as subsections (d) through (f), respectively; and
 (2) by inserting the following after subsection (a):
 "(b) Program.—As part of the activities authorized under section 209 of the Department of Energy Organization Act (42 U.S.C. 7139), the Director shall carry out a research program in elementary particle physics and advanced technology research and development to improve the understanding of the fundamental properties of the universe, including constituents of matter and energy and the nature of space and time.
 (c) High Energy Frontier Research.—As part of the activities described in subsection (b), the Director shall carry out research using high energy accelerators and advanced detectors including accelerators and detectors that will serve as national user facilities, to create and study interactions of elementary particles and investigate fundamental forces.
 (d) International Collaboration.—The Director shall—
 (1) be practicable and in coordination with other appropriate Federal agencies as necessary, ensure the access of United States researchers to the most advanced accelerator facilities and research capabilities in the world, including the Large Hadron Collider;
 (2) to the maximum extent practicable, continue to leverage United States participation in long-duration research projects and prioritize expanding international partnerships and investments in the Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment, and
 (3) to the maximum extent practicable, prioritize engagement in collaborative efforts in support of future international facilities that would provide access to the most advanced accelerator facilities in the world to United States researchers.
 (e) Cosmic Frontier Research.—Section 305(f) of the Department of Energy Research and Innovation Act (42 U.S.C. 18645(f), as redesignated by subsection (a), is amended to read as follows:
 "(f) COSMIC FRONTIER RESEARCH.—The Secretary shall—
 (1) carry out research activities on the nature of the primary contents of the universe, including the nature of dark energy and dark matter. These activities shall, to the maximum extent practicable, be consistent with the research priorities identified by the High Energy Physics Advisory Panel or the National Academy of Sciences, and may include—
 (i) collaborations with the National Aeronautics and Space Administration, the National Science Foundation, or international partners on relevant projects; and
 (ii) the development of space-based, land-based, water-based, and underground facilities and instruments; and
 (d) Further Activities.—Section 305 of the Department of Energy Research and Innovation Act (42 U.S.C. 18645) is further amended by adding at the end the following:
 (g) FACILITY CONSTRUCTION AND MAJOR ITEMS OF EQUIPMENT.—
 (1) The Director, consistent with the Office of Science's project management practices, the Director shall, to the maximum extent practicable, adjust facility designs and recommend the 2014 Particle Physics Project Prioritization Panel (P5) report titled 'Building for Discovery', and support construction or fabrication of—
 (A) an international Long-Baseline Neutrino Facility based in the United States;
 (B) the Proton Improvement Plan II;
 (C) Second Generation Dark Matter experiments;
 (D) the Legacy Survey of Space and Time camera;
 (E) upgrades to detectors and other components of the Large Hadron Collider; and
 (F) other high priority projects recommended in the most recent report of the P5 Panel.
 (h) FACILITY CAPABILITIES.—The Secretary shall ensure that the facility described in paragraph (A) will provide, at a minimum, the following capabilities:
 (i) a neutrino beam with wideband capability of 1.2 megawatts (MW) of beam power and upgradable to 2.4 MW of beam power;
 (ii) Three detectors for a 70 kiloton fiducial mass detector and supporting surface buildings and utilities;
 (iii) Cryogenic systems to support neutrino detectors.
 (i) START OF OPERATIONS.—The Secretary shall, subject to the availability of appropriations, ensure that the start of full operations of the facility under this subsection occurs before December 31, 2031.
 (j) FUNDING.—Out of funds authorized to be appropriated under subsection (k), there shall be made available to the Secretary to carry out construction of the facility under this subsection—
 (1) $200,000,000 for fiscal year 2022;
 (ii) $400,000,000 for fiscal year 2023;
 (iii) $500,000,000 for fiscal year 2024;
 (iv) $600,000,000 for fiscal year 2025; and
 (v) $700,000,000 for fiscal year 2026.
 (k) PROTON IMPROVEMENT PLAN-II ACCELERATOR UPGRADE PROJECT.—
 (A) IN GENERAL.—The Secretary of Energy shall carry out an upgrade to the Proton Improvement Plan II, an upgrade to the Fermilab accelerator complex identified in the 2014 Particle Physics Project Prioritization Panel (P5) report titled 'Building for Discovery', to provide the world’s most intense beam of neutrinos to the International Long Baseline Neutrino Facility as well as broad range of future high energy physics experiments. The Secretary of Energy shall work with international partners and appropriate, to increase beam power, sustain high reliability, and improve precision measurements to enhance the highest priority particle physics research programs. In carrying out facility upgrades, the Director shall continue to work with international partners, the National Science Foundation, and in the United States' interest to leverage investments and expertise in critical technologies to help build and upgrade accelerator and detector facilities in the United States.
 (B) ACCELERATOR AND DETECTOR UPGRADES.—The Director shall upgrade accelerator capabilities and detector components as necessary and appropriate, to increase beam power, sustain high reliability, and improve precision measurements to enhance the highest priority particle physics research programs. In carrying out facility upgrades, the Director shall continue to work with international partners, the National Science Foundation, and in the United States' interest to leverage investments and expertise in critical technologies to help build and upgrade accelerator and detector facilities in the United States.
 (C) OTHER HIGH DEVELOPMENT.—As part of the program described in subsection (b), the Director shall carry out research and development in
 (l) A flexible design to enable high power beam delivery to multiple users simultaneously and customized beams tailored to specific scientific needs.
 (m) Sustained high reliability operation of the Fermilab accelerator complex.
 (n) START OF OPERATIONS.—The Secretary shall, subject to the availability of appropriations, ensure that the start of full operations of the facility under this section occurs before December 31, 2031.
 (o) FUNDING.—Out of funds authorized to be appropriated under subsection (k), there shall be made available to the Secretary to carry out construction of the facility under this subsection—
 (1) $191,000,000 for fiscal year 2022;
 (ii) $150,000,000 for fiscal year 2023;
 (iii) $120,000,000 for fiscal year 2024;
 (iv) $120,000,000 for fiscal year 2025; and
 (v) $100,000,000 for fiscal year 2026.
 (p) COSMIC MICROWAVE BACKGROUND STAGE 4.—
 (A) IN GENERAL.—The Secretary of Energy, in partnership with the Director of the National Science Foundation, shall support construction of the Cosmic Microwave Background Stage 4 project, the cosmic microwave background to test theories of cosmic inflation as described in the 2014 Particle Physics Project Prioritization Panel report titled 'Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context'.
 (B) CONSULTATION.—The Secretary shall consult with the private sector, the National Laboratories, and relevant Federal agencies to ensure that this experiment is capable of meeting Federal research needs in advancing the ultra-high-energy physics of inflation and important neutrino properties.
 (C) EXPERIMENTAL CAPABILITIES.—The Secretary shall ensure to the maximum extent practicable that the facilities described in subsection (a) will provide at minimum, 500,000 superconducting detectors deployed on an array of mm wave telescopes with the required range in frequency, sensitivity, and survey speed which will provide sufficient capability to enable an order of magnitude advance in observations of the Cosmic Microwave Background, delivering transformative discoveries in fundamental physics, cosmology, and astrophysics.
 (q) START OF OPERATIONS.—The Secretary shall, subject to the availability of appropriations, ensure that the start of full operations of the facility under this section occurs before December 31, 2031.
 (r) FUNDING.—Out of funds authorized to be appropriated under subsection (k), there shall be made available to the Secretary to carry out construction of the facility under this subsection—
 (1) $37,000,000 for fiscal year 2022;
 (ii) $50,000,000 for fiscal year 2023;
 (iii) $70,000,000 for fiscal year 2024;
 (iv) $80,000,000 for fiscal year 2025; and
 (v) $90,000,000 for fiscal year 2026.
 (s) ACCELERATOR AND DETECTOR UPGRADES.—The Director shall upgrade accelerator capabilities and detector components as necessary and appropriate, to increase beam power, sustain high reliability, and improve precision measurements to enhance the highest priority particle physics research programs. In carrying out facility upgrades, the Director shall continue to work with international partners, the National Science Foundation, and in the United States' interest to leverage investments and expertise in critical technologies to help build and upgrade accelerator and detector facilities in the United States.
 (t) ACCELERATOR AND DETECTOR RESEARCH AND DEVELOPMENT.—As part of the program described in subsection (b), the Director shall carry out research and development in
particle beam physics, accelerator science and technology, and particle and radiation detection with relevance to the specific needs of the High Energy Physics program, in coordination with the Accelerator Research and Development program authorized in section 310.

(1) Undergraduate Science.—The Director shall—

(1) support an underground science program consistent with the missions of the Department and the scientific needs of the High Energy Physics program, including those articulated in the most recent report of the Particle Physics Project Prioritization Panel of the High Energy Physics Advisory Panel, on the capabilities of relevant underground science and engineering facilities; and

(2) carry out a competitive grant program to award scientists and engineers at institutions of higher education, nonprofit institutions, and National Laboratories to conduct research in underground science and engineering.

(2) Authorizations of Appropriations.—There are authorized to be appropriated to the Secretary to carry out the activities described in this section—

(1) $1,355,690,000 for fiscal year 2022;

(2) $1,517,628,300 for fiscal year 2023;

(3) $1,652,112,281 for fiscal year 2024;

(4) $1,711,931,650 for fiscal year 2025; and

(5) $1,656,012,351 for fiscal year 2026.

SEC. 8. NEUTRAL FISSION PROGRAM.

(a) Program.—Section 308 of the Department of Energy Research and Innovation Act (42 U.S.C. 18646) is amended—

(1) by striking subsection (a);

(2) by redesignating subsection (b) as subsection (a); and

(3) by inserting the following before subsection (d), as so redesignated:

‘‘(C) START OF OPERATIONS.—The Secretary shall, subject to the availability of appropriations, ensure that the start of full operations of the facility under this section occurs before March 1, 2022.

(3) $155,000,000 for fiscal year 2023;

(4) $293,000,000 for fiscal year 2024;

(5) $350,000,000 for fiscal year 2025;

(6) $400,000,000 for fiscal year 2026.’’. SEC. 9. ACCELERATOR RESEARCH AND DEVELOPMENT.

The Department of Energy Research and Innovation Act (42 U.S.C. 18601 et seq.) is amended by adding after section 309 the following:

‘‘SEC. 310. ACCELERATOR RESEARCH AND DEVELOPMENT.

(a) Program.—As part of the activities authorized under section 309 of the Department of Energy Organization Act (42 U.S.C. 7139), the Director shall carry out a research program to—

(1) advance accelerator science and technology relevant to the Department, other Federal agencies, and U.S. industry;

(2) foster partnerships to develop, demonstrate, and enable the commercial application of accelerator technologies;

(3) support the development of a skilled, diverse, and inclusive accelerator workforce; and

(4) provide access to accelerator design and engineering resources.

(b) Accelerator Research.—In carrying out the program authorized under subsection (a), the Director shall—

(1) support construction of a Facility for Rare Isotope Beams to advance the understanding of rare nuclear isotopes and the evolution of the cosmos;

(2) carry out a program to demonstrate, and commercial application of accelerator technologies including superconducting magnets and accelerators, beam physics, detectors, advanced accelerator controls, simulation software, new particle sources, advanced laser technology, and transformative research; and

(3) carry out the operations of the Accelerator Test Facility.

(c) Accelerator Development.—In carrying out the program authorized under subsection (a), the Director shall support partnerships to foster the development, demonstration, and commercial application of accelerator technologies including advanced superconducting wire and cable, superconducting RF cavities, and high efficiency radiofrequency power sources for accelerators.

(d) Research Collaborations.—In developing accelerator technologies under the program authorized in subsection (a), the Director shall—

(1) consider the requirements necessary to support translational research and development for medical, industrial, security, and defense applications; and

(2) leverage investments in accelerator technologies and fundamental research in particle physics by partnering with institutions of higher education, industry, and other Federal agencies to enable the commercial application of advanced accelerator technologies.

SEC. 311. ISOPODE DEVELOPMENT AND PRODUCTION FOR RESEARCH APPLICATIONS.

The Department of Energy Research and Innovation Act (42 U.S.C. 18601 et seq.) is amended by adding after section 310 as added by this Act the following:

‘‘SEC. 311. ISOPODE DEVELOPMENT AND PRODUCTION FOR RESEARCH APPLICATIONS.

(a) In General.—The Director—

(1) shall carry out a program in coordination with other relevant programs across the Department for the production of isotopes, including the development of techniques to produce isotopes, that the Secretary determines are needed for research, medical, industrial, or related purposes, to the maximum extent practicable with the 2015 Nuclear Science Advisory Committee Meeting Isotope Needs and Capturing Opportunities For The Future report; and

(2) shall ensure that the production activities carried out under the program under this paragraph do not compete with private industry unless the Director determines that critical national interests require the involvement of the Federal Government.

(b) Authorization of Appropriations.—There are authorized to be appropriated to carry out the program under this section—

(1) $500,000,000 for fiscal year 2022;

(2) $560,000,000 for fiscal year 2023;

(3) $600,000,000 for fiscal year 2024;

(4) $650,000,000 for fiscal year 2025; and

(5) $700,000,000 for fiscal year 2026.’’. SEC. 11. SCIENCE LABORATORIES INFRASTRUCTURE PROGRAM.

(a) Program.—Section 309 of the Department of Energy Research and Innovation Act (42 U.S.C. 18647) is amended by adding at the end the following:

‘‘(e) Authorization of Appropriations.—There are authorized to be appropriated to carry out the program under this section—

(1) $500,000,000 for fiscal year 2022;

(2) $560,000,000 for fiscal year 2023;

(3) $600,000,000 for fiscal year 2024;

(4) $650,000,000 for fiscal year 2025; and

(5) $700,000,000 for fiscal year 2026.’’.
K–12, university students, early-career researchers, faculty, and the National Laboratories, including through the use of proven techniques to expand the number of individuals from underrepresented groups pursuing and attaining skills or undergraduate and graduate degrees relevant to the Office’s mission.

(b) AUTHORIZATION OF APPROPRIATIONS.—
Section 3169 of the Department of Energy Science Education Enhancement Act (42 U.S.C. 7381e) is amended—
(1) by inserting the following, after the end of such section:

(p) AUTHORIZATION OF APPROPRIATIONS.—

SEC. 3167A. Broadening participation for teachers and scientists.

(a) In general.—The Department of Energy Science Education Enhancement Act (42 U.S.C. 7381 et seq.) is amended by inserting the following sections after section 3167 (42 U.S.C. 7381c–1):

I. IN GENERAL.—The Department of Energy Science Education Enhancement Act (42 U.S.C. 7381 et seq.) is amended—

SEC. 3167A. Broadening Participation for Teachers and Scientists.

(a) In general.—The Secretary shall expand opportunities to increase the number and the diversity, equity, and inclusion of highly skilled science, technology, engineering, and mathematics (STEM) professionals working in Department of Energy mission-relevant disciplines and broaden the recruitment pool to increase diversity, including expansion of partnerships with Historically Black Colleges, Tribal Colleges, Minority Serving Institutions, emerging research institutions, and scientific societies.

(b) Metrics for assessing the participation of underrepresented groups in Department programs;

(c) Authorization of Appropriations.—

SEC. 3168. Expanding Opportunities to Increase the Diversity, Equity, and Inclusion of Highly Skilled Science, Technology, Engineering, and Mathematics (STEM) Professionals.

(a) In General.—The Secretary shall expand opportunities to increase the number and the diversity, equity, and inclusion of highly skilled science, technology, engineering, and mathematics (STEM) professionals working in Department of Energy mission-relevant disciplines and broaden the recruitment pool to increase diversity, including expansion of partnerships with minority-serving institutions, non-Research I universities, and scientific societies.

(b) Plan and Outreach Strategy.—

(1) Plan.—Not later than 6 months after the date of enactment of the Department of Energy Science for the Future Act, the Secretary shall submit to the Committee on Science, Space, and Technology of the House of Representatives and the Committee on Energy and Natural Resources of the Senate a report, not later than 2 years after the date of enactment of the Future of Intense Ultrafast Lasers in the U.S. This report shall include research and development of petawatt-scale and of high average power laser technologies necessary for future facility needs in discovery science, advanced technologies, and as support for a user network of academic and national laboratory high intensity laser facilities.

(b) Leveraging.—The Director shall leverage new laser technologies for more compact, less complex, and low-cost accelerator systems needed for science applications.

(c) Coordination.—The Director shall coordinate this initiative among all relevant programs within the Office of Science, and the Secretary shall coordinate this initiative with other relevant programs within the Department as well as within other Federal agencies.

(b) Authorization of Appropriations.—

Out of funds authorized to be appropriated for the Office of Science there are authorized to be appropriated to the Secretary to carry out the activities described in this section:

(1) $50,000,000 for fiscal year 2022;
(2) $100,000,000 for fiscal year 2023;
(3) $150,000,000 for fiscal year 2024;
(4) $200,000,000 for fiscal year 2025; and
(5) $250,000,000 for fiscal year 2026.

SEC. 314. HELIUM CONSERVATION PROGRAM.

(a) In General.—The Secretary shall enter into a contract with the United States Department of Energy to provide for the conservation of helium for Department grant recipients and facilities and encourage helium recycling and reuse. The program shall competitively award grants for:

(1) the purchase of equipment to capture, reuse, and recycle helium;
(2) the installation, maintenance, and repair of new and existing helium capture, reuse, and recycling equipment; and
(3) helium alternative research and development activities.

(b) Report.—In carrying out the program under this section, the Director shall submit to the Committee on Science, Space, and Technology of the House of Representatives and the Committee on Energy and Natural Resources of the Senate a report, not later than 2 years after the date of enactment of the Department of Energy High Intensity Laser Research Initiative Act of 2025 (42 U.S.C. 7381e).

SEC. 315. HIGH INTENSITY LASER RESEARCH INITIATIVE.

(a) In General.—The Director shall establish a high intensity laser research initiative consistent with the recommendations of the National Academies report, ‘‘Opportunities for High Intensity Ultrafast Lasers in the U.S.‘‘ This initiative should include research and development of petawatt-scale and of high average power laser technologies necessary for future facility needs in discovery science, advanced technologies, and as support for a user network of academic and national laboratory high intensity laser facilities.

(b) Leveraging.—The Director shall leverage new laser technologies for more compact, less complex, and low-cost accelerator systems needed for science applications.

(c) Authorization of Appropriations.—

Out of funds authorized to be appropriated for the Office of Science there are authorized to be appropriated to the Secretary to carry out the activities described in this section:

(1) $50,000,000 for fiscal year 2022;
(2) $100,000,000 for fiscal year 2023;
(3) $150,000,000 for fiscal year 2024;
(4) $200,000,000 for fiscal year 2025; and
(5) $250,000,000 for fiscal year 2026.
Department of Energy Science for the Future Act, and every 3 years thereafter, on the purchase of helium as part of research projects and facilities supported by the Department shall include:

1. the quantity of helium purchased for projects and facilities supported by the Department;

2. a cost-analysis for such helium;

3. the predominant production sources for such helium;

4. expected or experienced impacts of helium on costs or prices of other research projects and facilities supported by the Department;

5. recommendations for reducing Department expenditures on volatile helium prices.

(c) Coordination.—In carrying out the program established under this section, the Director shall coordinate with the National Science Foundation and other relevant Federal agencies on helium conservation activities.

(d) Duration.—The program established under this section shall receive support for a period of not more than 5 years, subject to the availability of appropriations.

(e) In General.—In carrying out the program supported under this section, and to the maximum extent practicable, coordination with the Advanced Scientific Computing Research Initiative, other Federal programs, multi-institutional collaborations, and relevant research communities, including private sector entities, is recommended to address emerging infectious diseases, including COVID-19 challenges.

(f) Funding.—From within funds authorized to be appropriated for the Department’s Office of Science, there shall be made available to the Secretary to carry out the activities under this subsection, $50,000,000 for fiscal years 2022 and 2023.

(g) Prohibition.—In carrying out this Act, the Secretary may not carry out gain-of-function research of concern.

(h) Gain-of-Function Research Defined.—For purposes of this section, ‘‘gain-of-function research of concern’’ means research activities with the potential to generate pathogens with high transmissibility and high virulence in humans.

SEC. 316. AUTHORIZATION OF APPROPRIATIONS.

There are authorized to be appropriated to the Secretary to carry out the activities described in this Act:

1. $8,801,915,000 for fiscal year 2022;
2. $9,451,015,300 for fiscal year 2023;
3. $10,169,677,621 for fiscal year 2024;
4. $10,909,029,044 for fiscal year 2025; and
5. $11,145,796,345 for fiscal year 2026.

(b) Table of Contents.—Section 1(b) of the Department of Energy and Innovation Act is amended in the table of contents by inserting after the item relating to section 309 the following:

‘‘Sec. 310. Accelerator research and development.

Sec. 311. Isotope development and production for research applications.

Sec. 312. Increased collaboration with universities, teachers and scientists.

Sec. 313. High impact, early career research initiative.

Sec. 314. Helium conservation program.

Sec. 315. Office of Science Emerging Infectious Disease Computing Research Initiative.

Sec. 316. Authorization of appropriations.’’.

SEC. 14. STATE-OWNED ENTERPRISES PROHIBITION.

(a) INNOVATE IN AMERICA.—In carrying out this Act or the amendments made by this Act, the Secretary may not award a contract, subcontract, grant, or loan to an entity that—

1. is owned or controlled by, is a subsidiary of, or is otherwise related legally or financially to a corporation based in a country that—

A. is identified as a nonmarket economy country (as defined in section 712(b) of the Tariff Act of 1930 (19 U.S.C. 1677(b))) as of the date of enactment of this Act;

B. was identified by the United States Trade Representative as a country under subsection (a)(2) of that section; or

2. is a subsidiary of, or is otherwise related legally or financially to a corporation based in a country that—

A. is identified as a nonmarket economy country (as defined in section 712(b) of the Tariff Act of 1930 (19 U.S.C. 1677(b))) as of the date of enactment of this Act;

B. was identified by the United States Trade Representative as a country under subsection (a)(2) of that section; and

C. is subject to monitoring by the Trade Representative under section 306 of the Trade Act of 1974 (19 U.S.C. 2243) as a foreign country under subsection (a)(2) of that section;

(b) EXCLUSION.—For purposes of subsection (a), the Secretary may issue a waiver, to be made publicly available, to an entity in which the legal or financial connection to a corporation is a minority relationship or involves a minority interest, if—

1. the waiver will not result in the acceptance of a waiver from the obligation to comply with subsection (a); and

2. the Secretary determines that the waiver is in the national interest.

(c) INTERNATIONAL AGREEMENTS.—This section shall be applied in a manner consistent
with the obligations of the United States under international agreements.

SEC. 15. DETERMINATION OF BUDGETARY EF-

FECTS.

The budgetary effects of this Act, for the purpose of complying with the Statutory Pay-As-You-Go Act of 2010, shall be deter-
mimed by reference to the latest statement titled ‘‘Statement of Administration Policy for Infrac-
tion’’ for this Act, submitted for printing in the Congressional Record by the Chairman of the House Budget Committee, provided that such statement has been submitted prior to the vote on passage.

The SPEAKER pro tempore. Pursuant
to the rule, the gentlewoman from Texas (Ms. JOHNSON) and the gen-
tleman from Oklahoma (Mr. LUCAS) each will control 20 minutes.

The Chair recognizes the gentle-
woman from Texas. To

Ms. JOHNSON of Texas. Mr. Speaker, I ask unanimous consent that all Mem-
bers may have 5 legislative days to re-
vise and extend their remarks and to
type in material on H.R. 3593, the bill now under considera-
tion. The SPEAKER pro tempore. Is there objection to the request of the gentle-
woman from Texas?

There was no objection.

Ms. JOHNSON of Texas. Mr. Speaker, I yield myself such time as I may con-
sume.

I am very pleased today that we are consid-
ering the Department of Energy Science for the Future Act.

This well-vetted, bipartisan bill will pro-
vide the first ever comprehensive authoriza-
tion for the Department of Energy’s Office of Science. This office accounts for over half of the Depart-
ment’s nondefense research and develop-
ment budget and supports a wide range of research facilities and activi-
ties that are critical to the U.S. com-
petitiveness and for enabling our clean energy future.

The Office of Science is the Nation’s largest patron of research in the physical sciences, and it is the lead Federal agency supporting scientific research for energy applications.

H.R. 3593 authorizes significant, steady, and sustainable growth for the office’s wide-ranging research from climate science to quantum science, and every-
thing in between.

The bill also ensures the office’s con-
struction projects and upgrades to its world-class scientific user facility have the resources they need to be com-
pleted on time and on budget.

H.R. 3593 is a substantial effort in the fight against climate change. The bill autho-
izes research to advance the next generation of clean energy tech-
nologies to help us reach our shared goals of developing energy that is clean, sustainable, reliable, and afford-
able. In carrying out these activities, this bill also directs the office to sup-
port the development of a skilled, di-
verse, and inclusive workforce for clean energy professionals, scientists, and professionals.

That is why the bill has been en-
dorsed by stakeholders in the business community, like the U.S. Chamber of Commerce; the academic community, like the Association of American Universities; major scientific associations, like the American Physical and Chemical Societies; and significant environ-
mental organizations like the Environ-
mental Defense Fund.

This bill is another strong example of the collaborative bipartisan approach that our committee has taken. Rank-

ing Member LUCAS’ collaborative ap-
proach has been crucial in getting us to where we are already making.

Before I yield back, I would like to recognize the Committee on Science, Space, and Technology staff who worked on this bill, and in some cases for several years now: Adam Rosenberg, Alyse Huffman, Sangina Wright, and Bill Kallen. I also recognize the ef-
forts of Ranking Member LUCAS’ staff in helping us to get where we are today, including Hillary O’Brien, Jenn Wickre, and Daniel Dziodon.

I urge my colleagues on both sides of the aisle to support this bill to dramatically improve the Na-
tion’s competitiveness and help lead us all to a brighter future. Mr. Speaker, I reserve the balance of my time.

Mr. LUCAS of Oklahoma. Ms. JOHNSON, I yield myself such time as I may con-
sume.

I rise in support of H.R. 3593, the De-
partment of Energy Science for the Fu-

ture Act. This legislation, along with H.R. 2225, the NSF for the Future Act

is a comprehensive and strategic ap-

proach for investing in American re-
search and development.

For decades, America has been the global leader in science and technology development. That success is no acci-
dent. It is the result of two things: A cultural commitment to innovation and exploration, and a sustained in-
vestment in basic research.

This is what makes us uniquely suc-
cessful. The Federal Government funds high-risk, high-reward basic research

that expands our fundamental know-
ledge of science and technology. This

research, which is too costly for the marketplace to fund, produces discov-

deries that can then be commercialized through private industry.

Our system maximizes taxpayer in-
vestment and takes advantage of strong public-private partnerships to keep America at the cutting edge of technological progress.

A union of our scientists and our adversaries in China are investing more than us in R&D in an attempt to take over the lead in science and technology.

The way to stay ahead of China isn’t adopting their method of a top-down,
government-mandated, applied research agenda. It is to invest in the basic research, infrastructure, and

STEM workers that have always driven American progress.

H.R. 3593 does just that. It is the first comprehensive authorization of the Of-

fice of Science, which is our Nation’s largest Federal sponsor of basic re-

search in the physical sciences. The DOE Science for the Future Act invests

$50 billion over 5 years in the Office of Science and the national labs, national scientific user facilities, and the thou-
sands of researchers its supports.

The DOE Science for the Future Act is an investment in our technological and clean energy future. It funds re-

search into materials, chemical, bio-

logical, and environmental sciences, as well as fusion energy, advanced com-
puting capacities, and cutting edge technologies like artificial intelligence and quantum sciences.

We already know that investments in basic research pay large dividends. For example, basic research conducted in our national labs gave us improved hy-
draulic fracturing technology and al-

lowed us to produce more clean natural gas. This reduced emissions, lowered energy costs for Americans, and helped us become a net total energy exporter for the first time in decades.

That is why everyone who cares about clean energy must care about the DOE Science for the Future Act.

Investing in high-risk, early-stage re-

search into cutting edge technologies is the only way to ensure that America stays at the head of the clean energy economy.

Another important provision in the DOE Science for the Future Act is the creation of a crosscutting Emerging In-
fectious Disease Research Initiative to build on DOE’s work to better model, understand, and fight infectious diseases.

As they have shown time and again during the COVID-19 pandemic, our na-
tional labs have an important role to play in supporting public health. This legis-
lation gives them the resources they need to continue this work.

H.R. 3593 also funds much-needed infra-

structure updates for our national labs and user facilities. Our ability to con-
duct world-leading science depends on having access to world-leading equipment and facilities.

It also requires having skilled STEM professionals to conduct that research. Our bill includes workforce develop-
ment and education provisions so that we have a thriving STEM pipeline to fill the technological jobs of the future.

Mr. Speaker, H.R. 3593 is a forward-
looking bill that is badly needed right

now to drive American progress and to keep us globally competitive.

As with the NSF for the Future Act,

this legislation was drafted with exten-
sive input in a bipartisan fashion, and

the result is a strategic and responsible investment in the next generation of breakthrough energy technologies.

I thank my friend Chairwoman JON-

search for all her work with me on this bill, and I urge my colleagues to pass this now. Mr. Speaker, I reserve the balance of my time.

Ms. JOHNSON of Texas. Mr. Speaker,

I yield such time as she may consume.

I thank my friend Chairwoman JON-

search for all her work with me on this bill, and I urge my colleagues to pass

this now. Mr. Speaker, I reserve the balance of my time.

Ms. MOORE of Wisconsin. Mr. Speak-

er, I thank the gentlewoman for yield-

ing.
I rise today in support of H.R. 3593, the Department of Energy Science for the Future Act. As a newly minted member of the Science, Space, and Technology Committee, I was so proud to see my colleagues on both sides of the aisle work so hard on this bill to pass it through committee with amendments from both Democrats and Republicans. I, too, had an opportunity as a newly minted member to make an impact on this important legislation.

And I think that it wasn’t by accident, and I think that the chairman of the committee, Representative EDDIE BERNICE JOHNSON and Representative LUCAS, the ranking member, for creating the environment in which we could do our work and craft this important legislation.

As you all have heard, the Department of Energy’s Office of Science is a hub of technological advancement and research designed to tackle our greatest scientific challenges facing the United States.

Through several hearings in the committee, we learned about the DOE Office of Science’s ongoing efforts to support research and to find solutions. This bill allows the Office of Science to cut out nondefensive research on a vast array of critical areas. It supports research to modernize our energy infrastructure, allowing us the tools to overhaul our outdated energy grid to more climate-friendly solutions. And we, of course, have seen some of the catastrophic events caused by the lack of current technologies that recognize the climate action.

It funds continuing studies in artificial intelligence and quantum computing, keeping pace with our competitors in the tech sector and readying our cybersecurity defenses from our adversaries, as we have seen up close and personal the cost to our country to not keep abreast of these technologies.

Additionally, I was able to offer a provision that was included in the bill that is before the House today that would prioritize clean water and watershed research at the Office of Science.

My amendment directs the Office of Science to support clean water and watershed research that increases the quality and quantity of water across America, including the treasured Great Lakes.

My home district of Milwaukee shares a coast with Lake Michigan, which I consider one of my most important constituents.

It is imperative that we study the harmful effects of water pollution, make investments in technologies to combat the contamination of our waterways, and protect drinking water sources that are critical to every man, woman, and child. We also need to make sure that water continues to be a resource for commerce.

My amendment also ensures that relevant communities, research institutions, and nonprofits will be at the table when DOE carries out these tasks. Innovation doesn’t occur in a vacuum, and it is critical that these research efforts have real world input from key stakeholders.

Before I close, I want to mention something about the National Science Foundation, H.R. 2225, which we considered on this floor today. I thank the chair and the ranking member for lending in again to put this together in giving Members an opportunity to weigh in.

As you all know, the NSF is the funder of more than 1,800 institutions in the United States, and they provide tremendous resources, funding, and opportunities for STEM students. I have been able to weigh in to make sure that there is diversity and opportunity in STEM.

I urge my colleagues to support H.R. 3593, the Department of Energy Science for the Future Act.

Mr. LUCAS. Mr. Speaker, I yield 6 minutes to the gentleman from Texas (Mr. WEBER), the ranking member of the Subcommittee on Energy.

Mr. WEBER of Texas. Mr. Speaker, I thank Ranking Member LUCAS and the chair, Ms. EDDIE BERNICE JOHNSON. With this bill, the two of them have perfectly demonstrated how a committee can actually function—even with occasional disagreements—to prioritize shared goals and produce truly bipartisan products. They are to be congratulated.

Mr. Speaker, I rise today in strong support of H.R. 3593, the Department of Energy Science for the Future Act.

After over a decade of budget requests, hearings, stakeholder input, and information-gathering, I say with a sigh of relief and a great deal of joy that the Committee on Science, Space, and Technology has a bipartisan and comprehensive Office of Science authorization.

Although it has taken a little longer than I would have expected, it couldn’t come at a better time. America’s scientific enterprise has never faced a more serious threat from global competition than it does right now—today.

Innovative science discoveries and advance technology development aren’t just aspirations; they are the actual key to our national security, as well as our economic prosperity. That is because innovation and technology are exactly what the Chinese Communist Party has prioritized in its goal to overtake the United States of America as a global leader in industries of the future.

Mr. Speaker, if we want to maintain our key edge in technology areas, like quantum information science and artificial intelligence, and combat the threat of another country controlling the development of those cutting-edge technologies and standards, we must take action.

Mr. Speaker, the solution is really quite simple. We have to invest in American innovation. Just that simple. We must invest in our facilities and our research right here in the United States so that we can ensure the United States remains the global leader in science.

How exactly we go about that might be the subject of another debate. But I fully believe that the bill that we have before us today is the best course of action.

The Department of Energy’s Office of Science has time and time again demonstrated that basic science research is the most effective way to encourage development of those new technologies. And as the largest Federal sponsor of basic research in the physical sciences, with unparalleled research capabilities and infrastructure, the Office of Science and its national laboratories are uniquely equipped to help America compete.

By authorizing cutting-edge research programs with a responsible, scalable funding increase and a strategic roadmap, the DOE, federal R&D funded discoveries made through the Office of Science will pave the way for both public and private American innovators to license technologies and to launch those startups.

Mr. Speaker, in addition, the Office of Science research in materials and chemical science, biological and environmental research, and fusion energy will not only maintain our lead in science, but will also lay the foundation for the next generation of clean, secure, and exportable energy technologies. Don’t miss that; Clean, exportable, and secure technologies.

Maximizing the Office of Science’s role in our Federal research enterprise is how we win. This great legislative body and the Federal Government as a whole cannot and will not duplicate a nonmarket economy by forcing mandates and regulations. Instead, we can arm our dynamic private sector with the tools necessary to commercialize sustainable, affordable, and scalable energy solutions. Again, don’t miss that.

Through the DOE Science of the Future Act, we are prioritizing critical research areas and investing in the science and technology that will drive development of those technologies into the next generation. This will allow America’s economy to thrive while reducing global emissions and allowing market-based solutions to flourish.

Don’t miss that.

Robust and consistent support for the Office of Science is crucial to the success and security of the U.S. innovation ecosystem, U.S. energy independence, and U.S. security.

Mr. Speaker, this bill does that in a clear, streamlined fashion. It is not bogged down by outside interests or unrelated provisions. We won’t just keep up with China and other foreign adversaries; we will outpace them and lead, just like the United States of America has always done.

That is a good thing. That is a very good thing, by the way.
Mr. Speaker, I take a moment to thank the many stakeholders who have worked so hard to get this critical legislation done right. Hats off to all of them.

Mr. Speaker, I urge my colleagues to support this measure. It is a great one. It is high time we had this one on the floor.

Ms. JOHNSON of Texas. Mr. Speaker, I reserve the balance of my time.

Mr. LUCAS. Mr. Speaker, I am prepared to close, and I yield myself such time as I may consume.

Mr. Speaker, America’s scientific and technological leadership is being threatened by the Chinese Communist Party, and we must act urgently to reinvest in our own research and development enterprise.

H.R. 3593 redoubles our commitment to the basic research conducted by the Department of Energy’s Office of Science and our national laboratories. Together with the NSF for the Future Act, it is a comprehensive and sustainable approach to American competitiveness.

Mr. Speaker, I thank my staff for everything they have done to help draft this important legislation. I thank my friend, Chairwoman JOHNSON, and her staff, with us to include Republican priorities and ensure that this is a truly bipartisan bill.

Mr. Speaker, I urge my colleagues to support this legislation, and I yield back the balance of my time.

Ms. JOHNSON of Texas. Mr. Speaker, I yield myself such time as I may consume.

Mr. Speaker, in closing, let me simply say that we on this committee know that we are the committee that will determine the future of our Nation and the standing of the world when it comes to science. And we have taken our work very seriously. I am grateful to all of the members. We know we cannot be any better than the people who involve and use their talents, and we must do that as well.

Mr. Speaker, I yield all of the members of the committee on both sides of the aisle for staying with us and working through all that we know we need to do to come together to look out for the future of our Nation’s scientific enterprise.

Mr. Speaker, I ask all of the persons, my colleagues, to support this bill and vote ‘yes’.

Mr. Speaker, I yield back the balance of my time.

The SPEAKER pro tempore. The time is 11:00 a.m. Pursuant to clause 8 of Rule XX, further proceedings on this motion are postponed.

HONORING OUR PROMISES THROUGH EXPEDITION FOR AFGHAN SIVS ACT OF 2021

Ms. DEAN. Mr. Speaker, I move to suspend the rules and pass the bill (H.R. 3385) to waive the requirement to undergo a medical examination for aliens who are otherwise eligible for special immigrant status under the Afghan Allies Protection Act of 2009, and for other purposes, as amended.

The Clerk read the title of the bill.

Ms. JOHNSON of Texas. Mr. Speaker, I move to adjourn.

Mr. speaker, I yield to the gentleman from Pennsylvania (Ms. DEAN) and the gentlewoman from Virginia (Mrs. ROY-VAUGHN) for their remarks and to include extra-copy of the report that the Committee on Homeland Security and Governmental Affairs has submitted for printing in the Congressional Record for the 117th Congress.

Ms. DEAN. Mr. Speaker, I ask unanimous consent that all Members have 5 legislative days to revise and extend their comments and to include extraneous material on H.R. 3385.

The SPEAKER pro tempore. Pursuant to the request of the gentleman from Pennsylvania (Ms. DEAN), the hon. Members from Pennsylvania (Ms. DEAN) and the gentleman from Tennessee (Mr. COOPER) will control 20 minutes.

Mr. Speaker, H.R. 3385, the Honoring Our Promises through Expedition for Afghan SIVs Act of 2021—or the “HOPE for Afghan SIVs Act of 2021” —is a truly bipartisan bill.

Mr. Speaker, I urge my colleagues to support this legislation, and I yield myself such time as I may consume.

Mr. Speaker, H.R. 3385 redoubles our commitment to the Afghan Allies Protection Act of 2009—also known as the SIVs Act—proposes a small, but impactful, change to expedite the issuance of special immigrant visas to those who served side by side with American troops in Afghanistan, and whose lives are at risk.

The Afghan Special Immigrant Visa program allows individuals who worked for or on behalf of the United States