

September 11, 2025

The Honorable Gary Palmer
Chairman, Subcommittee on Environment
House Committee on Energy and Commerce
2125 Rayburn House Office Building
Washington, DC 20515-6115

## Dear Chairman Palmer:

Enclosed are my responses to the questions for the record from my testimony of July 16, 2025, on recycling innovation and economic growth. Thank you again for the opportunity to testify and for the Subcommittee's attention to this important topic. I was encouraged by the discussion and the bipartisan interest in real steps to improve our recycling infrastructure.

We at the American Chemistry Council look forward to working with the Subcommittee on this and other important issues in the 119<sup>th</sup> Congress.

Very truly yours,

Ross Eisenberg

President, America's Plastic Makers™





## **Responses to Questions for the Record**

## The Honorable Bob Latta (R-OH)

- 1. You noted in your written testimony that mechanical recycling is incorporating more advanced technologies and increasingly able to handle more plastics.
  - a. In addition to reducing the amount of plastic that ends up in a landfill, how can new advances in mechanical recycling technologies enhance economic opportunities?
  - b. What obstacles do we face in scaling up mechanical plastics recycling technologies?

## Response:

Mechanical recycling is becoming significantly more advanced. New sorting technologies, artificial intelligence, enhanced shredding and washing technologies, improved decontamination and more streamlined operations are widening the types of materials mechanical recyclers can take and increasing their capacity. I recently visited the grand opening of a new mechanical recycling facility in Connersville, Indiana, which takes in post-consumer plastic film (i.e. bags) from recycling bins, store drop-off locations and back-of-store collections and cleans, chops, remelts and reforms the films into new plastics suitable for a wide range of food-contact packaging applications. This state-of-the-art manufacturing facility takes advantage of the newest technologies on the market and is capable of recycling over 145,000 bales of plastic per year.

Many of the obstacles that stand in the way of scaling up mechanical plastics recycling are the same ones standing in the way of non-mechanical (i.e. advanced or chemical) recycling.

• <u>Infrastructure:</u> Many consumers still lack access to recycling. Municipalities struggle to collect and sort used plastics. Existing equipment is old and outdated and cities and towns lack the budget flexibility to invest in new equipment. These challenges are the same for all forms of recycling. A few years ago, ACC released our <u>Roadmap to Reuse</u>, a set of actions that we believe could modernize the way we collect, recycle and reuse plastic and other materials.



<sup>&</sup>lt;sup>1</sup> https://plasticmakers.org/our-solutions/eliminating-plastic-waste/the-roadmap-to-reuse/.



- Design for recyclability: Many companies are working to make their plastic packaging easier to recycle.<sup>2</sup> Large brands are demanding more plastic containing recycled content to meet sustainability goals. So, many of today's plastic makers are creating some of their products with recycled plastic and announcing plans for more. These trends support a self-reinforcing loop: easier-to-recycle packaging, more market demand for recycled plastic, and more recycled plastic. Improving design of packaging will make it easier for products entering the recycling stream to be recycled. Our colleagues at the Association of Plastic Recyclers maintain an APR Design® Guide for recyclability that dives deeper into this topic.<sup>3</sup>
- <u>Policy:</u> Many of the same policy concepts I outlined in my written testimony for advanced recycling would also apply to mechanical recycling. Improvements to the regulatory approval process, a more consistent national recycling framework, and policies like recycled content standards and extended producer responsibility (EPR) can be effective tools to accelerate the growth of mechanical and non-mechanical recycling in the U.S.



<sup>&</sup>lt;sup>2</sup> https://plasticmakers.org/our-solutions/designing-for-recycling/.

<sup>&</sup>lt;sup>3</sup> https://plasticsrecycling.org/apr-design-hub/apr-design-guide-overview/.